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Abstract
 Artificial intelligence is poised to revolutionize every aspect of human life, finding applications in everything from self-driving cars to diagnosing cancer. In fact, almost any task that involves pattern recognition can be formulated in a way 

that modern AI algorithms can be used to achieve super-human performance. The immune synapse is a highly complex interaction between several proteins and peptides that allows for a constant surveillance of foreign invaders. However, mod-
eling these interactions is extremely difficult as the combinations of interactions is simply intractable. In immune-oncology, the study of this interaction is crucial as anti-tumor responses rely on sensitive and specific recognition of tumor-specif-
ic antigens. Implications of accurately predicting and modeling these interactions in immune-oncology range from improved and potent vaccine design to biomarkers for predicting response to immunotherapy to furthering our understanding of 
immune recognition.
  Our group has developed a variety of deep learning models to model the signal transmission within the immune synapse. We first present AI-MHC, an applied deep convolutional neural network for class-specific MHC binding algorithm that achieves 
state-of-the-art performance in both Class and Class II predictions. By incorporating ‘meaning’ of the allele within the network, we are able to model the interaction of allele and peptide within the context of a neural network. We take these concepts fur-
ther in the development of DeepMANA, a deep learning framework which combines sequence-specific information about an allele/peptide pairing to not only predict binding affinity for any allele with a known protein sequence but also provide an anti-
gen ‘quality’ score. We observe that in three immunotherapy clinical trials, these quality neoantigens are enriched in long-term survivors/responders. Finally, we present DeepTCR,  a package of unsupervised and supervised deep learning algorithms to 
reveal structure in T-cell receptor sequencing that is predictive of various pathologies and therapies. 

AI-MHC DeepTCR

DeepMANA

 The immune system has potential to present a wide variety of peptides to itself as a means of surveillance for pathogenic 
invaders. This means of surveillances allows the immune system to detect peptides derives from bacterial, viral, and even on-
cologic sources. However, given the breadth of the epitope repertoire, in order to study immune responses to these epitopes, 
investigators have relied on in-silico prediction algorithms to help narrow down the list of candidate epitopes, and current 
methods still have much in the way of improvement. 
 We present Allele-Integrated MHC (AI-MHC), a deep learning architecture with improved performance over the current 

state-of-the-art algorithms in human Class I and Class II MHC binding prediction. Our architecture utilizes a convolutional 
neural network that improves prediction accuracy by 1) allowing one neural network to be trained on all peptides for all al-
leles of a given class of MHC molecules by making the allele an input to the net and 2) introducing a global max pooling op-
eration with an optimized kernel size that allows the architecture to achieve translational invariance in MHC-peptide binding 
analysis, making it suitable for sequence analytics where a frame of interest needs to be learned in a longer, variable length 
sequence. We assess AI-MHC against internal independent test sets and compare against all algorithms in the IEDB automat-
ed server benchmarks, demonstrating our algorithm achieves state-of-the-art for both Class I and Class II prediction.1

 Deep learning algorithms have been utilized to achieve excellent performance in pattern-recognition tasks, such as in 
image and vocal recognition3,4. The ability to learn complex patterns in data has tremendous implications in the genomics 
world, where sequence motifs become learned ‘features’ that can be used to predict functionality, guiding our understand-
ing of disease and basic biology1,5–7. T-cell receptor (TCR) sequencing assesses the diversity of the adaptive immune 
system, and while prior conventional biological sequence analysis tools have been insightful, they can miss signals in the 
data due to their rigidity8-10. We present DeepTCR, a broad collection of unsupervised and supervised deep learning meth-
ods able to uncover structure in highly complex and large TCR sequencing data. We demonstrate its utility across multiple 
basic science and clinical examples, including learning antigen-specific motifs, understanding immunotherapy-related 
shaping of repertoire, and learning a predictive signature in the peripheral blood of individuals with multiple sclerosis 
(MS). We further extract meaningful motifs from the trained network as a means of explaining the sequence concepts that 
have been learned to accomplish a given task. Our results show the flexibility and capacity for deep neural networks to 
handle the complexity of high-dimensional genomics data for both descriptive and predictive purposes. 
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(a) AI-MHC is designed to take a peptide/allele pair which are transformed with either (1) convolutional 
layers or (2) trainable embedding layers learning vector representations of alleles and (3) amino acids. 
1024 10-mer convolutions with global max pooling are applied to the sequence resulting in a [1,1024] fea-
ture map for each sequence. The sequence feature map is then concatenated to the [1,512] allele feature 
map. This long-form vector [1,1536] is then followed by 3 fully-connected layers with 50% dropout and 
utilizing leaky relu activations functions with a final output node with sigmoid activation.(b) Trained em-
bedding layers were extracted from the network graph for amino acid and Class I embeddings and are 
visualized with clustermaps (c) ROC for Class I and Class II models.
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(a) DeepMANA is designed to take a peptide/allele pair and predict both binding affinity (IC50) and a 
Self/Foreign Score. The network is trained on competitive bnding data from the IEDB as well as data 
taken from the IEDB divided into peptides taken from human/infectious agents. The network is trained in 
an alternating fashion where the convolutional layers are shared by both classifiers while separate ful-
ly-connected layers are used to predict binding affinity and self/foreign score. (b) DeepMANA was used 
to predict the quality scores of all neoantigens for long/short term survivors and responder/progressors to 
immunotherapy. We note enrichment in either long-term survivors or responders for ‘high-quality’ neoan-
tigens, those who are characterized by the neural network to be non-self/foreign in nature.2 
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Figure 1. Deep Learning Architectures. (a) The variational autoencoder (VAE) is designed to take as a discrete 
input the amino acid sequence of the TCR sequence with a right zero-padding scheme. A trainable embedding layer 
is used to transform the sequence from discrete to continuous numerical domain. Convolutional and fully connect-
ed layers transform the sequence into a latent representation that is parametrized by a multi-dimensional unit gauss-
ian. Reconstruction of the sequence occurs via fully connected and deconvolutional layers followed by the transpo-
sition of the same trainable embedding layer used at the beginning of the network. (b) The generative adversarial 
network (GAN) consists of the generator and discriminator, separate networks trained with separate objective func-
tions. The generator samples from a multi-dimensional unit gaussian to create a ‘fake’ TCR sequence. The discrim-
inator learns to distinguish ‘real’ from ‘fake’ sequences through one layer of convolutions with a global max pool-
ing operation to provide translational invariance to the network. Of note, the generator’s output is the continuous 
and not discrete representation of the TCR sequence. The latent space used for downstream analysis is the penulti-
mate layer of the discriminator, here described as having dimensions of [256,1]. (c) The single sequence classifier 
follows a conventional convolutional neural network architecture consisting of one convolutional layer with global 
max pooling and three fully connected layers to a final classification layer. (d) The whole sample classifier utilizes 
a kernel that scans in a horizontal fashion across all sequences in the file resulting in a sequences-by-features tensor. 
This is then multiplied by the frequency vector for each sequence to derive weighted sequence features. These are 
then summed across the sequence space to compute sample level features that are fed into a classification layer. 

Figure 2. Unsupervised Learning Examples. (a) Heatmaps of sequences-by-features for anti-
gen-specific sequences tetramer-sorted cells for 7 viral-specific antigens. (b) Heatmaps of sam-
ples-by-features for antigen-specific samples.(c) Clustering specificity by VAE & GAN (d) Charac-
teristics of clustering solutions as applied to VAE & GAN
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Figure 3. Supervised Learning Examples. (a) Receiver Operating Characteristic 
(ROC) curves for single sequence and whole sample classifier for murine TIL 
cohorts treated by various immunotherapies.11 (b) Representative motifs learned 
by whole sample classifier for cohorts that had highly predictive structural signa-
tures. 
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