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Motivation and Overview

We decided to take this course to understand the behavior of most basic systems that we could think of or would come across
in our work. Now that we have learned how to analyze them and have developed an intuition for them, we wanted to put our
new knowledge and skills to the test. We decided to derive our own system after coming across the harmonic oscillator problem
in one of our problem sets. Deriving a new system would not only test our skill but also force us to incorporate the knowledge
we gained in our physics and engineering courses over the last three years - a rather nice culmination of our undergraduate
education.

The system we derived and wanted to understand is a system of two charged masses each attached to a center point by a
spring (see �gures below). In this report, we will explain how we derived this system from basic physics principles and how
we tested our model to make sure it did not exhibit unrealistic behaviors. We then analyze the system by �rst changing the
dimensional system into a dimensionless one. We do this because a dimensionless system makes our analysis simpler by looking
at the ratios of parameters (more on this later). Finally, we �nd the �xed points, attempt to characterize them, and understand
when the system becomes choatic. The challenge turned out harder than we expected but the e�ort was rewarding.

Another way of looking at the behavior of a two-body system like ours is to analyze the system from the perspective of one
body. In their book on dynamical systems, Hirsch, Smale, and Devaney (HSB) refer to the system that is similar to ours as the
gravitational two-body problem. The gravitational two-body problem is the system of two particles interacting with each other
through gravity. The way HSB sets up the system for analysis is that they consider the system from the perspective of one of the
bodies. The approach reduces the number of parameters of the system to make the analysis more manageable. However, HSB's
approach does not consider the case of repelling force of particles. Their model assumes that the particles are not attracted to
the middle of the system by some spring force. Therefore, a repelling force will cause the particles to move away from each other
inde�nitely, so the HSB model is not appropriate for the problem that our system solves. The major di�erence between the two
models is the inclusion of springs that keep the particles a certain distance away from the center. Nevertheless, the approach of
constructing the set of equations in terms of one particle relative to the other would have been an interesting system to model.
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Governing Physics Equations

In order to derive the di�erential equations that governed the dynamics of this mechanical system, we began by analyzing the
basic laws of physics behind the dynamics. The physics behind our system were comprised of summing forces and torques to
determine translational and rotational accelerations.

Translational Accelerations

∑
F1 = m1ar1 = Fspring1 + Felec1 • r̂1 + Fcentripetal1

∑
F2 = m2ar2 = Fspring2 + Felec2 • r̂2 + Fcentripetal2

These equations re�ect the idea that the sum of the forces in the radial direction on both masses will dictate the radial
acceleration of the masses. Since the forces of the spring and centripetal motion are always in the radial direction, these forces
are always purely in these directions. However, since the electric force depends on the relative location of the masses, the radial
force must be calculated calculating the component of the electric force that is along the radial direction.

Rotational Accelerations

dL1

dt
=

∑
τ1 = τelec1 = Felec1 × r1

dL2

dt
=

∑
τ2 = τelec2 = Felec2 × r2

These equations re�ect the idea that the change in angular momentum is equivalent to the sum of the torques on the individual
masses. Since the only possible torque in the system can come from the electric �eld, it is the only component we account for in
these equations. We can also see that the torque is calculated as the cross product between the electric force and the lever arm
that is the length of r.
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Governing Di�erential Equations

These equations can be written in the form of 4 coupled 2nd-order di�erential equations as follows:

1. m1r̈1 +K1(r1 −R1) = Keq1q2

[
r1−r2cos(θ1−θ2)

(r21−2r1r2cos(θ1−θ2)+r22)
( 3
2
)

]
+m1r1( ˙θ1)

2

2. m1r
2
1 θ̈1 = Keq1q2

[
r1r2sin(θ1−θ2)

(r21−2r1r2cos(θ1−θ2)+r22)
3
2

]
− 2m1(θ̇1)r1(ṙ1)

3. m2r̈2 +K2(r2 −R2) = Keq1q2

[
r2−r1cos(θ1−θ2)

(r21−2r1r2cos(θ1−θ2)+r22)
( 3
2
)

]
+m2r2(θ̇2)

2

4. m2r
2
2 θ̈2 = −Keq1q2

[
r1r2sin(θ2−θ1)

(r21−2r1r2cos(θ1−θ2)+r22)
3
2

]
− 2m2(θ̇1)r2(ṙ2)

The above equations can then be re-written in the form of a 8 �rst-order di�erential equations as follows:

r1 = x1 ṙ1 = x2 θ1 = x3 θ̇1 = x4 r2 = x5 ṙ2 = x6 θ2 = x7 θ̇2 = x8

1. ẋ1 = x2

2. ẋ2 = Keq1q2
m1

[
x1−x5cos(x3−x7)

(x2
1−2x1x5cos(x3−x7)+x2

5)
3
2

]
+ x1x

2
4 − K1

m1
(x1 −R1)

3. ẋ3 = x4

4. ẋ4 = Keq1q2
m1x2

1

[
x1x5sin(x3−x7)

(x2
1−2x1x5cos(x3−x7)+x2

5)
3
2

]
− 2x2x4

x1

5. ẋ5 = x6

6. ẋ6 = Keq1q2
m2

[
x5−x1cos(x3−x7)

(x2
1−2x1x5cos(x3−x7)+x2

5)
3
2

]
+ x5x

2
8 − K2

m2
(x5 −R2)

7. ẋ7 = x8

8. ẋ8 = Keq1q2
m2x2

5

[
x1x5sin(x7−x3)

(x2
1−2x1x5cos(x3−x7)+x2

5)
3
2

]
− 2x6x8

x5
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Validation of Equations

Due to the fact that these equations were derived from the basic physical laws, we desired to verify that our system was truly
depicting the physical phenomenon. Since we understood our system consisted of a harmonic oscillator, we knew that there
must be both conservation of energy as well as conservation of angular momentum. However, when we began our analysis, we
primarily focused on conservation of energy. The result of these simulations informed us that we would also need to examine the
conservation of angular momentum principles.

Dimensional Energy

The Equations

In order to analyze the total energy within our system, the following equations were derived in order to capture energy stored
in rotational motion, translational motion, the electric �eld, and the spring.

1. e1rot =
1
2m1x

2
1x

2
4

2. e1trans =
1
2m1x

2
2

3. e1spring = 1
2K1(x1 −R1)

2

4. e1elec =
Keq1q2

(x2
1−2x1x5cos(x3−x7)+x2

5)
1
2

5. e2rot =
1
2m2x

2
5x

2
8

6. e2trans =
1
2m2x

2
2

7. e2spring = 1
2K2(x5 −R2)

2

8. e2elec =
Keq1q2

(x2
1−2x1x5cos(x3−x7)+x2

5)
1
2

The Analysis

In our �rst simulations, we monitored the amount of energy in the system as it was allocated between the various components
within the system. Our results provided interesting insights into the dynamics of our system. In order to understand these
dynamics, we will examine two cases: (1) where the masses remain relatively far apart; (2) where the masses incur collisions.

In the �rst case (results below), we can see that energy seems to be relatively conserved between both masses. The total
energy in the system does not vary and their is minimal energy transfer between the masses as they never come close to collisions.
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In the second case (results below), when we allow our masses to collide and transfer energy, an interesting phenomenon is
observed. The total energy in the system appears to peak whenever the masses come very close to each other and have a transfer
of energy. This can be explained by the fact that as two charges come very close, the force approaches a value close to in�nity
due to Coulomb's Law:

F = Ke
q1q2
r2

Therefore, as the masses come very close, numerical inaccuracies in calculating the force become magni�ed and there appears
to be a peak in the energy in the system. However, due to the fact that these peaks occur over very small time-steps, the
overall energy in the system seems una�ected. However, this phenomenon in the numerical simulations pushed us to �nd another
method of validation.
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Dimensional Angular Momentum

In conducting our simulations and monitoring the energy in our system, we realized that by examining the total angular
momentum in the system, we could avoid the numerical inaccuracies in monitoring the energy in the system. This can be
explained by the fact that in calculating the angular momentum, there are no terms that approach in�nity as the masses
approach each other in a �collision.�

The Equations

1. l1 = m1x
2
1x4

2. l2 = m2x
2
5x8

The Analysis

In examining the total angular momentum in the system, we �rst realized that as the laws of physics would mandate, angular
momentum was conserved. We also noticed that even with collisions in the system, the total angular momentum did not exhibit
the peak-like behavior as with the energy analysis. We can see this by examining the two same cases as before, while examining
the total angular momentum in the system as oppose to the total energy.

As we can see in the results below, even when there are collisions in the system, the angular momentum remains constant
and there are no numerical artifacts as in the energy simulations.

8



Dimensional Analysis

A challenge physicists and engineers encounter often when analyzing physical systems is isolating the parameters that have the
most in�uence on the behavior of the system. Therefore, a common tool employed to understand the factors that a�ect a physical
system is dimensional analysis. With this tool, the equations are scaled over constant values in the system in order to make
the equations dimensionless. The resulting analysis yields equations with fewer parameters of constants but with more meaning.
These parameters may be ratios or quantities that relate various forces or characteristics within the system. For example, the
Reynold's number in �uid dynamics is a dimensionless number that gives a measure of the ratio between the inertial and viscous
forces in a �uids system.

Therefore, in order to simplify our original dimensional equations that contained 9 dimensional parameters, we employed
dimensional analysis to reduce these 9 parameters to 4 meaningful dimensionless parameters. In creating these parameters, we
also needed to scale the variables and initial conditions.

Dimensionless Variables

In order to begin the dimensional analysis, we �rst scaled the dimensional variables within our equations. It is important to note
here that X3 and X7 are not scaled as they are in units of radians that are inherently dimensionless.

T = t√
m1
K1

X1 = x1

R1
X2 = x2

R1√
m1
K1

X4 = x4
1√
m1
K1

X5 =
x5

R1
X6 =

x6

R1√
m1
K1

X8 =
x8
1√
m1
K1

Dimensionless Parameters

In working through the dimensionless analysis, the following parameters were grouped together in order to assemble the following
four parameters. Each of these parameters represents a certain important ratio in the dynamics of the system.

µ = Keq1q2
K1R3

1
δ = R1

R2
λ = m1

m2
ζ = K1

K2

Our �rst dimensionless parameter, µ, represents the ratio of electric forces to spring forces. The greater the absolute value of
µ, the stronger the electric charges are and the more the behavior of the system is dominated by the electric �eld forces. It is also
important to note that the sign of µ corresponds to whether the charges in the system are attractive or repulsive. Ultimately µ
can have any real value, positive, negative, or zero. In the analysis of �xed points, this parameter proved to be very important
in changing the qualitative behavior of the system.

Our remaining three dimensionless parameters relate the relative equilibrium spring lengths, the relative masses, and the
relative spring constants. While these parameters are important to understanding the relative dynamics of the system, they are
less in�uential on the qualitative behavior of the system. It is also important to note that all these have values that are only
positive real numbers due to their physical meanings. In our analysis, we set these three parameters equal to 1 signifying the
ratio of the masses, their spring constants, and their equilibrium lengths were all equal.

These dimensionless parameters and variables allowed us to derive the following dimensionless ODE's, initial conditions along
with their corresponding dimensionless energy and angular momentum equations.
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Dimensionless Equations

1. dX1

dT = X2

2. dX2

dT = µ

[
X1−X5cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
+X1X

2
4 − (X1 − 1)

3. dX3

dT = X4

4. dX4

dT = µ
X2

1

[
X1X5sin(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− 2X2X4

X1

5. dX5

dT = X6

6. dX6

dT = µλ

[
X5−X1cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
+X5X

2
8 − λ

ζ (X5 − 1
δ )

7. dX7

dT = X8

8. dX8

dT = µλ
X2

5

[
X1X5sin(X7−X3)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− 2X6X8

X5

Dimensionless Initial Conditions

1. X1(0) =
x1,0

R1

2. X2(0) =
x2,0
R1√
m1
K1

3. X3(0) = x3,0

4. X4(0) =
x4,0

1√
m1
K1

5. X5(0) =
x5,0

R1

6. X6(0) =
x6,0
R1√
m1
K1

7. X7(0) = x7,0

8. X8(0) =
x8,0

1√
m1
K1

Dimensionless Energy

1. E1 = X2
1X

2
4 +X2

2 + (X1 − 1)2 + 2µ

(X2
1−2X1X5cos(X3−X7)+X2

5 )
1
2

2. E2 =
X2

5X
2
8

λ +
X2

6

λ +
(X5− 1

δ )
2

ζ + 2µ

(X2
1−2X1X5cos(X3−X7)+X2

5 )
1
2

Dimensionless Angular Momentum

1. L1 = X2
1X4

2. L2 =
X2

5X8

λ
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Fixed-Point Analysis

Fixed-Point Identi�cation

Now that we have a simpler model, we can �nd the �xed points of the dimensionless system. The �xed points we �nd can be
converted back into the dimensional system easily, so nothing is lost by analyzing the dimensionless system. To �nd the �xed
points of the system, we set all equations to zero and we get the following:

1. 0 = X2

2. 0 = µ

[
X1−X5cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
+X1X

2
4 − (X1 − 1)

3. 0 = X4

4. 0 = µ
X2

1

[
X1X5sin(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− 2X2X4

X1

5. 0 = X6

6. 0 = µ

[
X5−X1cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
+X5X

2
8 − (X5 − 1)

7. 0 = X8

8. 0 = µ
X2

5

[
X1X5sin(X7−X3)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− 2X6X8

X5

Notice that the last terms in ẋ4 and ẋ8are zero because x4and x8 are zero. Therefore, for ẋ4 and ẋ8to equal zero either x1,
x5, or|sin(x3 − x7)|must equal zero. We know that x1and x5 cannot equal zero because they are in the denominators of terms
in x4and x8. Thus, |sin(x3 − x7)| = 0. Now, solving |sin(x3 − x7)| = 0, we �nd that x3 − x7 = 0 or multiples of π, but it is
enough to consider 0 andπ. With this analysis, we can simplify the above equations to the following:

1. 0 = µ

[
X1−X5cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− (X1 − 1)

2. 0 = µ

[
X5−X1cos(X3−X7)

(X2
1−2X1X5cos(X3−X7)+X2

5 )
3
2

]
− (X5 − 1)

With that, we �nd that cos(x3 − x7) = −1 or 1. We now �nd the �xed points for two di�erent cases.

Case 1

In our �rst case, we are examining the case for when the charges are π radians apart or across each other from the center of
their orbits. For cos(x3 − x7) = −1, we �nd that x1 = x5 and get the following two equations after plugging in x1 = x5 :

0 =
µ
∣∣ 1
x5

∣∣
4x5

− x5 + 1

0 =
µ
∣∣ 1
x1

∣∣
4x1

− x1 + 1

These equations de�ne the relationships of the �xed points and their dependency on µ. We now �nd x1and x5for di�erent
values of µnumerically.
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The graph shows that as the magnitude of the repulsive (positive) charge increases, the equilibrium points move farther out.
When µ equals 0, the equilibrium point is that of the harmonic oscillator without an electric �eld which is at the equilibrium
lengths of the springs. Finally, as µbecomes more negative, the masses move closer to the center and closer to each other.
However, once µ falls below ~.6, the electric force is greater than the spring force and there are no longer any equilibrium points
for this case when µ < .6.

Therefore, the �xed points for when cos(x3 − x7) = −1 are:

X1&X5 (defined above) (1)

X2 = X4 = X6 = X8 = 0 (2)

X3 = X7 + π (3)

Essentially, this de�nition of the �xed point encompasses an open set of �xed points around the circle given by (3).

Case 2

In our second case, we will examine when the masses have the same value for X3 and X7. Therefore, cos(X3−X7) = 1. We �nd
that x1 = 2− x5 and get the following two equations after plugging in x1 = x5 :

0 =
−µ

∣∣ 1
x5−1

∣∣
4(x5−1) + x5 − 1

0 =
µ
∣∣ 1
x1−1

∣∣
4(x1−1) − x1 + 1

These equations de�ne the relationships of the �xed points and their dependency on µ. We now �nd x1and x5for di�erent
values of µnumerically.
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This graph shows that as µ becomes larger and positive, there is a point where the repulsion pushes one of the masses into
the center which is a singularity. While the model does not capture what occurs when the repulsion pushes one of the masses
into the center of the orbits, the physical analog would never allow a mass to enter the center of the orbit due to the presence of
a physical spring. Therefore, we would qualify this mathematical model as moderately accurate of the physical model. It is also
important to notice, that there is another �xed point by symmetry that would exist in the case where the positions of X1and
X5 were reversed. This symmetry in the model allows us to examine one case.

When µ equals zero, the system has a �xed point corresponding to the uncoupled mechanical system at X1 = 1, X5 = 1.
Finally, as µbecomes negative, the �xed points vanish. This result is what we would expect because as the charges become
attractive, the masses will attract each other and approach each other for an in�nite amount of time, never reaching a �xed
point due to there being a discontinuity in the vector �eld when X1 = X5.

Therefore, the �xed points for when cos(x3 − x7) = 1 are:

X1&X5 (defined above) (1)

X2 = X4 = X6 = X8 = 0 (2)

X3 = X7 (3)

Essentially, this de�nition of the �xed point encompasses an open set of �xed points around the circle given by (3).

Conclusions of Fixed-Point Identi�cation

Combining the results of these cases, we can construct a bifurcation diagram where the number of �xed points varies as a function
of µ. This bifurcation can be summarized in the following:

µ > 4 : 1 fixed point

0 ≤ µ < 4 : 2 fixed points

−.6 < µ < 0 : 1 fixed point

µ < −.6 : No fixed points

Now with an understanding of the existence of �xed points in our system, we may move on to characterize them by examining
the solutions around them.
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Fixed-Point Characterization

First, we must acknowledge that our system operates in eight dimensions. From two-dimensional analogs, we know there are
certain possibilities for characterizing �xed point within this domain. We can use this knowledge to characterize these �xed
points in eight dimensions. Since our system is conservative, we know that these �xed points can have behaviors similar only to
centers and saddles. We rule out unstable �xed points as time-reversibility turns unstable �xed points into stable �xed points.
Since a conservative cannot have stable �xed points, we rule out both unstable and stable �xed points. Therefore, our system
can only exhibit saddle-like or center-like behavior.

We will characterize saddle-like behavior as a �xed point with both positive and negative eigenvalues, and we will characterize
center-like behavior as a �xed point with at least two purely imaginary eigenvalues. We imagine that with more dimensions,
�xed points can display multiple behaviors. In conducting this analysis, we noticed that our system displayed both types of
behavior. Therefore, we came to the conclusion that these �xed points were a combination of saddles and centers due to their
ability to contain multiple sets of eigenvalues. Also, since our �xed points are really an open set of �xed points (de�ned by (3)
above), they are also non-isolated �xed points in these dimensions. The physical explanation of this is the two masses can be at
equilibrium at any θaround the circle. We also noticed that for di�erent values of µ, di�erent types of �xed points could exist.
For the purpose of this analysis, we will cluster the group of non-isolated �xed points as one type of �xed point and therefore,
we will examine various values of µ and the corresponding nature of the �xed points.

Case 1:

0 =
µ
∣∣ 1
x5

∣∣
4x5

− x5 + 1

0 =
µ
∣∣ 1
x1

∣∣
4x1

− x1 + 1

X2 = X4 = X6 = X8 = 0

X3 = X7 + π

−.6 < µ < 0

In �rst studying the solutions around this �xed point for the given range of µ, we discovered that solutions displayed a behavior
such that for any initial conditions, the long term behavior of the system approached in�nity. This can be seen in the example
where the masses are slightly perturbed from �xed point (below). The physical explanation for what is occurring is that due
to the attractive force between the masses, as they approach each other, their velocities become in�nitely positive as their
potentials become in�nitely negative. Eventually, for all initial conditions, there is eventually a �collision� of the masses and
their radial/angular velocities approach in�nity. It was noticed that as |µ| became smaller, the longer it took before the collision
occured. In our numerical simulations, this approach towards in�nity causes the ODE solver in matlab to crash leaving us with a
pre-mature ending to our simulation. Therefore, we can characterize this �xed point as exhibiting non-linear saddle-like behavior
for the given range of µ.
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µ = 0

When we uncouple the dynamics of the two masses (µ = 0), we are left with the simple case where the �xed point simply a
center and shows completely oscillatory behavior.

µ > 0

When we introduce repulsive charges into our system µ > 0, we begin to see quasi-periodic behavior around the �xed point.
However, we completely lose our ability to obtain unbounded solutions because �collisions� of the masses are no longer possible.
Therefore, this �xed point can be characterized as exhibiting center-like behavior.
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Case 2:

0 =
−µ

∣∣ 1
x5−1

∣∣
4(x5−1) + x5 − 1

0 =
µ
∣∣ 1
x1−1

∣∣
4(x1−1) − x1 + 1

X2 = X4 = X6 = X8 = 0

X3 = X7

µ = 0

When we uncouple the dynamics of the two masses (µ = 0), we are left with the simple case where the �xed point is simply a
center and shows completely oscillatory behavior. There is no need to show results from simulations as they are identical to the
other �xed point examined previously.

0 < µ < 4

When we introduce repulsive charges into our system µ > 0, we begin to see quasi-periodic behavior around the �xed point.
Therefore, by the same reasoning as before, we know this system cannot have unbounded solutions and therefore cannot exhibit
saddle-like behavior. Therefore, this �xed point for the given values of µ must exhibit center-like behavior.

Fixed-Point Conclusions

After analyzing our system, the results of our �xed-point analysis have revealed that with the variation of the parameter µ , our
system can display bifurcations where �xed-points appear and reappear as well as change their characteristic behavior. These
results can be summarized by the following:

• µ < −.6: There are no �xed points in the system as the attractive charge in the physical system dominates the behavior
of the system.

• −.6 < µ < 0 : There is one �xed point in the system that exhibits saddle-like behavior. The physical representation is of
the two charged masses being an oppososite sides of the circle they orbit where the spring forces are able to balance the
attractive forces.

• 0 ≤ µ < 4 : There are two �xed points in the system that exhibit center-like behavior. The physical representation is of
the two charged masses either being on opposite sides of the circle or on the same side. In either case, their repulsion is
balanced by the spring forces.

• µ > 4 : There is one �xed point in the system that exhibits center-like behavior. The physical representation is of the two
charged masses being on opposite sides of the circle they orbit where the spring forces are able to balance the repulsive
forces.
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Chaos

In studying this system, we noticed that by adding an electric �eld, we allowed for the possibility of chaos and for strange
attractors.

We de�ne chaos as the following (Strogatz 1985):

• Aperiodic long-term behavior

• Deterministic, meaning no random or noisy inputs or parameters.

• Sensitive Dependence on Initial Conditions

We de�ne an attractor as the following (Strogatz 1985):

• A is an invariant set: any trajectory x(t) that starts in A stays in A for all time.

• A attracts an open set of initial conditions.

• A is minimal: there is no proper subset of A that satis�es conditions 1 and 2.

• Finally, we de�ne a strange attractor as an attractor that exhibits sensitive dependence on initial conditions.

In order to analyze this, we decided to study di�erent cases for µ. To analyze the presence of chaos, we ran simulations of a
given initial condition with a slight perturbation (10−15) , and then monitored the di�erence between the solutions over time to
see if an exponential divergence occured (indicating a sensitive dependence on initial conditions) and whether there was aperiodic
long-term behavior. We assume that our system is deterministic. In running these simulations, the �rst thing we learned was in
choosing an initial condition to study, we must choose one that is su�ciently far away from any possible �xed points. The reason
for this is if we are su�ciently close to a �xed point, the solution will not exhibit chaos but rather adopt the local behavior of
the �xed point.

µ < 0

In analyzing the system for the case where there are attractive charges, simulations show that for initial conditions away from
any �xed points, chaos does occur. However, while there is a sensitive dependence on initial conditions, since all solutions tend
to in�nity as the particles eventually �collide,� we know that there is no strange attractor in the system for µ < 0.

µ = 0

In analyzing the system for the case where there are no charges, simulations show that for initial conditions away from any �xed
points, while there is a sensitive dependence on initial conditions, there is no long term aperiodic behavior. We can come to
the conclusion that this system does not exhibit chaos based on long term simulations showing periodic predictable solutions.
Finally, we notice that all solutions are bounded in phase-space, and therefore, according to the de�ned criteria above, we know
there must be a strange attractor in the system.

17



µ > 0

In analyzing the system for the case where there are repulsive charges, simulations show that for initial conditions away from
any �xed points, chaos does occur. Since all solutions are bounded for all time, we know there must be an attractor that appears
when µ > 0. Furthermore, since there is a sensitive dependence on initial conditions, we can classify the attractor as a strange
attractor. However, it is interesting to note in this analysis, the chaos does not seem to be as severe as in the case where µ < 0
and attractive charges are present. In the case where there are repulsive charges, the time horizon is much longer than in the
case of where there are attractive charges.

Chaos Conclusions

In studying this system, we can summarize our �ndings about chaos and attractors in the system as the following:

• µ < 0 : There is chaotic behavior in the system.

• µ = 0 : There is no chaotic behavior but there exists a strange attractor in phase-space.

• µ > 0 : There is a combination of chaotic behavior as well as a strange attractor.
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Future Steps & Conclusions

In studying this system, we realized the di�culty in analyzing a system in 8 dimensions. Therefore, much of our conclusions
were based on numerical simulations rather than analytical techniques. In the future, we believe a better analytical analysis
could be completed through linearization of the system and determining the eigenvalues of the system. If this was completed,
we would be able to validate our conclusions about the �xed point characterization through the use of eigenvalues rather than
numerical simulations. Another approach to simplifying the system would have been to analyze the system using our reference
frame as one of the masses. In this manner, we would have been able to reduce our equations in half. This would allow for a
more feasible manner to determine the �xed points and characterize them.

In conclusion, our team analyzed a system of electrically coupled harmonic oscillators. Through starting with the basic laws
of physics, we were able to validate our initial dimensional di�erential equations through conservation of energy and momentum
laws. Once this was completed, we completed a dimensional analysis to identify important parameters in the behavior of the
system and decided to study what we believed was the most in�uential parameter in the system's qualitative behavior. We
termed this parameter, µ, and it represented the ratio of the electrical forces to the spring forces in the system. By examining
the range of values µ could take, we identi�ed bifurcations of �xed points depending on the sign and magnitude of µ. Once we
identi�ed the �xed points, we moved on to characterizing them through numerical perturbation studies around the �xed points.
Finally, we examined the possibility for chaos and strange attractors in our system. We found that once again, the parameter
µ in�uenced the existence and behaviors of chaotic solutions and strange attractors. Through a comprehensive analysis of the
mathematical system, we can say that it is evident that in the physical system, the strongest in�uence on the behavior of the
coupled oscillators is whether the electric forces or spring forces dominate the behavior of the system. This parameter not only
determines �xed points, but also the behavior around these �xed points and the overall presence of chaotic solutions as well as
the existence of strange attractors.
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MATLAB Code

%The following code was used to analyze the dimensional system.

function main(tim,ch,range)

K1=10; K2=10; q1=1e-6; q2=1e-6; m1=1; m2=1;R1=1;R2=1;Ke= 8.987e9;

options=odeset('RelTol',1e-12,'Stats','on');

Xo=[1;0;pi;-1;1;0;0;-.5];

tspan=[0,tim];

tic

[t,X]=ode113(@Testfunction,tspan,Xo,options);

toc

[X3,X1]=pol2cart(X(:,3),X(:,1));

[X7,X5]=pol2cart(X(:,7),X(:,5));

if ch==1

p1=plot(X3,X1);

set(p1,'Color','blue');

hold on;

p2=plot(X7,X5);

set(p2,'Color','red');

elseif ch==2;

for j=1:5:size(X(:,1),1);

p1=plot(X3(1:j),X1(1:j));

hold on;

set(p1,'Color','blue');

hold on;

p2=plot(X7(1:j),X5(1:j));

set(p2,'Color','red');

M(j)=getframe;

end

%

numtimes=3;

fps=10;

movie(M,numtimes,fps)

elseif ch==3;

dis=(sqrt(power(X(:,1),2)-2.*X(:,1).*X(:,5).*cos(X(:,3)-X(:,7))+power(X(:,5),2)));

eb1=(1/2)*m1.*power(X(:,1),2).*power(X(:,4),2)+(1/2)*m1.*power(X(:,2),2)+(1/2)*K1

.*power(X(:,1)-R1,2)+(Ke*q1*q2)

./(sqrt(power(X(:,1),2)-2.*X(:,1).*X(:,5).*cos(X(:,3)-X(:,7))+power(X(:,5),2)));

p2=plot(t,eb1,'*');

set(p2,'Color','c');

hold on;

eb2=(1/2)*m2.*power(X(:,5),2).*power(X(:,8),2)+(1/2)*m2.*power(X(:,6),2)+(1/2)*K2

.*power(X(:,5)-R2,2)+(Ke*q1*q2)

./(sqrt(power(X(:,1),2)-2.*X(:,1).*X(:,5).*cos(X(:,3)-X(:,7))+power(X(:,5),2)));

p3=plot(t,eb2);

set(p3,'Color','b');

hold on;

total=eb1+eb2;

p1=plot(t,total);

maxi=max(total);

set(p1,'Color','red');

axis([0 tim 0 (1.1)*maxi]);

xlabel('Time');

ylabel('Energy');
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legend('Energy Ball 1','Energy Ball 2','Energy Total');

figure

eb1rot=(1/2)*m1.*power(X(:,1),2).*power(X(:,4),2);

eb1trans=(1/2)*m1*power(X(:,2),2);

eb1spring=(1/2)*K1.*power(X(:,1)-R1,2);

eb1elec=(Ke*q1*q2)./dis;

p5=plot(t,eb1rot);

hold on;

set(p5,'Color','red');

p6=plot(t,eb1trans);

hold on;

set(p6,'Color','blue');

p7=plot(t,eb1spring);

hold on;

set(p7,'Color','c');

hold on;

p9=plot(t,eb1elec);

set(p9,'Color','m');

hold on;

p8=plot(t,eb1rot+eb1spring+eb1trans+eb1elec);

hold on;

set(p8,'Color','black');

legend('Rotational Energy','Translational','Spring Energy','Electrical Energy','Total Energy');

title('Ball 1 Energy');

axis([0 tim 0 (1.1)*max(eb1rot+eb1spring+eb1trans+eb1elec)])

xlabel('Time (s)');

ylabel('Energy (J)');

figure

eb2rot=(1/2)*m2.*power(X(:,5),2).*power(X(:,8),2);

eb2trans=(1/2)*m2*power(X(:,6),2);

eb2spring=(1/2)*K2.*power(X(:,5)-R2,2);

eb2elec=(Ke*q1*q2)./dis;

p5=plot(t,eb2rot);

hold on;

set(p5,'Color','red');

p6=plot(t,eb2trans);

hold on;

set(p6,'Color','blue');

p7=plot(t,eb2spring);

hold on;

set(p7,'Color','c');

hold on;

p9=plot(t,eb2elec);

set(p9,'Color','m');

hold on;

p8=plot(t,eb2rot+eb2spring+eb2trans+eb2elec);

hold on;

set(p8,'Color','black');

legend('Rotational Energy','Translational','Spring Energy','Electrical Energy','Total Energy');

title('Ball 2 Energy');

axis([0 tim 0 (1.1)*max(eb2rot+eb2spring+eb2trans+eb2elec)])

xlabel('Time (s)');

ylabel('Energy (J)');

figure

eball1=eb1rot+eb1spring+eb1trans+eb1elec;

eball2=eb2rot+eb2spring+eb2trans+eb2elec;

p1=plot(t,eball1);

set(p1,'Color','blue');
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hold on;

p2=plot(t,eball2);

set(p2,'Color','red');

hold on;

p3=plot(t,eball1+eball2);

set(p3,'Color','black');

legend('Ball 1','Ball 2','Total');

title('Total Energy within the System');

xlabel('Time (s)');

ylabel('Energy (J)');

elseif ch==5;

p1=plot(t,X(:,4));

title('ang speed ball 1')

set(p1,'Color','red');

hold on;

p4=plot(t,X(:,8));

set(p4,'Color','blue');

title('ang speed ball 2');

figure

p2=plot(t,X(:,2));

title('trans speed ball 1');

hold on;

p3=plot(t,X(:,6));

title('trans speed ball 2');

set(p2,'Color','blue');

set(p3,'Color','red');

elseif ch==6;

%Calculate angular Momentum of Ball 1

angmom1=m1*power(X(:,1),2).*X(:,4);

linmom1=m1*X(:,2);

plot(t,angmom1);

title('Angular Momentum of Ball 1');

figure

plot(t,linmom1);

title('Linear Momentum of Ball 1');

Calculate the angular Momentum of Ball 2

angmom2=m2*power(X(:,5),2).*X(:,8);

linmom2=m2*X(:,6);

figure

plot(t,angmom2);

title('Angular Momentum of Ball 2');

figure

plot(t,linmom2);

title('Linear Momentum of Ball 2');

%Calculate the Total Linear Momentum

%

figure

p1=plot(t,linmom1);

set(p1,'Color','blue');

hold on;
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p2=plot(t,linmom2);

set(p2,'Color','red');

hold on;

p3=plot(t,linmom1+linmom2);

set(p3,'Color','c');

title('Linear Momentum');

legend('Ball 1', 'Ball 2','Total');

%Calculate the Total Angular Momentum

figure

p1=plot(t,angmom1);

set(p1,'Color','blue');

hold on;

p2=plot(t,angmom2);

set(p2,'Color','red');

hold on;

p3=plot(t,angmom1+angmom2);

set(p3,'Color','c');

title('Angular Momentum');

legend('Ball 1', 'Ball 2','Total');

xlabel('Time (s');

ylabel('Momentum (N*m*s)');

else

end

return

%Dimensional ODE's

function [dx_dt]=Testfunction(t,x);

K1=10; K2=10; q1=1e-6; q2=1e-6; m1=1; m2=1;R1=1;R2=1;Ke= 8.987e9;

C=Ke*q1*q2;

A1=((x(1)-x(5)*cos(x(3)-x(7))))/((x(1)�2-2*x(1)*x(5)*cos(x(3)-x(7))+x(5)�2)�(3/2));

A2=((x(5)-x(1)*cos(x(3)-x(7))))/((x(1)�2-2*x(1)*x(5)*cos(x(3)-x(7))+x(5)�2)�(3/2));

B1=(x(5)*x(1)*sin(x(3)-x(7)))/((x(1)�2-2*x(1)*x(5)*cos(x(3)-x(7))+x(5)�2)�(3/2));

B2=(x(5)*x(1)*sin(x(7)-x(3)))/((x(1)�2-2*x(1)*x(5)*cos(x(3)-x(7))+x(5)�2)�(3/2));

dx_dt(1)=x(2);

dx_dt(2)=(C/(m1))*A1+x(1)*(x(4)�2)-(K1*(x(1)-R1))/m1;

dx_dt(3)=x(4);

dx_dt(4)=(C/(m1*(x(1)�2)))*B1-(2*x(4)*x(2))/x(1);

dx_dt(5)=x(6);

dx_dt(6)=(C/m2)*A2+x(5)*(x(8)�2)-(K2*(x(5)-R2))/m2;

dx_dt(7)=x(8);

dx_dt(8)=(C/(m2*(x(5)�2)))*B2-(2*x(8)*x(6))/x(5);

dx_dt=transpose(dx_dt);

return

%The following code was used to analyze the dimensionless system.

function dimensionless(tim,ch,range);

mu=1;delta=1;lambda=1;zeta=1;

options=odeset('RelTol',1e-12,'Stats','on');
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%x1=.943877; x5=x1;

x1=power(2,1/3)/2+1; x5=1-power(2,1/3)/2;

Xo=[x1;.1;0;0;x5;0;0;0];

tspan=[0,tim];

tic

[t,X]=ode113(@dimensionlessode,tspan,Xo,options);

toc

[X3,X1]=pol2cart(X(:,3),X(:,1));

[X4,X2]=pol2cart(X(:,4),X(:,2));

[X7,X5]=pol2cart(X(:,7),X(:,5));

[X8,X6]=pol2cart(X(:,8),X(:,6));

if ch==1

p1=plot(X3,X1);

set(p1,'Color','blue');

hold on;

p2=plot(X7,X5);

set(p2,'Color','red')

title('Trajectories of Masses');

xlabel('X-Position');

ylabel('Y-Position');

elseif ch==2;

for j=1:5:size(X(:,1),1);

p1=plot(X3(1:j),X1(1:j));

hold on;

set(p1,'Color','blue');

hold on;

p2=plot(X7(1:j),X5(1:j));

set(p2,'Color','red');

M(j)=getframe;

end

numtimes=3;

fps=10;

movie(M,numtimes,fps)

elseif ch==3;

dis=(sqrt(power(X(:,1),2)-2.*X(:,1).*X(:,5).*cos(X(:,3)-X(:,7))+power(X(:,5),2)));

%Plot Energy Profile for Ball 1

figure

eb1rot=power(X(:,1),2).*power(X(:,4),2);

eb1trans=power(X(:,2),2);

eb1spring=power(X(:,1)-1,2);

eb1elec=(2*mu)./dis;

p5=plot(t,eb1rot);

hold on;

set(p5,'Color','red');

p6=plot(t,eb1trans);

hold on;

set(p6,'Color','blue');

p7=plot(t,eb1spring);

hold on;

set(p7,'Color','c');

hold on;

p9=plot(t,eb1elec);

set(p9,'Color','m');
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hold on;

p8=plot(t,eb1rot+eb1spring+eb1trans+eb1elec);

hold on;

set(p8,'Color','black');

legend('Rotational Energy','Translational','Spring Energy','Electrical Energy','Total Energy');

title('Ball 1 Energy');

axis([0 tim 0 (1.1)*max(eb1rot+eb1spring+eb1trans+eb1elec)])

%Plot Energy for Ball 2

figure

eb2rot=(power(X(:,5),2).*power(X(:,8),2))/lambda;

eb2trans=(power(X(:,6),2))/lambda;

eb2spring=(power(X(:,5)-(1/delta),2))/zeta;

eb2elec=(2*mu)./dis;

p5=plot(t,eb2rot);

hold on;

set(p5,'Color','red');

p6=plot(t,eb2trans);

hold on;

set(p6,'Color','blue');

p7=plot(t,eb2spring);

hold on;

set(p7,'Color','c');

hold on;

p9=plot(t,eb2elec);

set(p9,'Color','m');

hold on;

p8=plot(t,eb2rot+eb2spring+eb2trans+eb2elec);

hold on;

set(p8,'Color','black');

legend('Rotational Energy','Translational','Spring Energy','Electrical Energy','Total Energy');

title('Ball 2 Energy');

axis([0 tim 0 (1.1)*max(eb2rot+eb2spring+eb2trans+eb2elec)])

figure

eball1=eb1rot+eb1spring+eb1trans+eb1elec;

eball2=eb2rot+eb2spring+eb2trans+eb2elec;

p1=plot(t,eball1);

set(p1,'Color','blue');

hold on;

p2=plot(t,eball2);

set(p2,'Color','red');

hold on;

p3=plot(t,eball1+eball2);

set(p3,'Color','black');

legend('Ball 1','Ball 2','Total');

title('Total Energy in System');

elseif ch==4;

angmom1=power(X(:,1),2).*X(:,4);

angmom2=(power(X(:,5),2).*X(:,8))/lambda;

figure

p1=plot(t,angmom1);

set(p1,'Color','blue');

hold on;

p2=plot(t,angmom2);

set(p2,'Color','red');

hold on;

p3=plot(t,angmom1+angmom2);
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set(p3,'Color','c');

title('Angular Momentum');

legend('Ball 1', 'Ball 2','Total');

elseif ch==5;

figure

p1=plot(t,X(:,1));

title('Ball 1 Position');

xlabel('Time');

ylabel('Position');

figure

p2=plot(t,X(:,2));

title('Ball 1 Radial Velocity');

xlabel('Time');

ylabel('Radial Velocity');

figure

p3=plot(t,X(:,3));

title('Ball 1 Theta');

figure

p4=plot(t,X(:,4));

title('Ball 1 Omega');

xlabel('Time');

ylabel('Angular Velocity');

else

end

return

%Dimensionless ODE's

function [dx_dt]=dimensionlessode(t,x);

mu=0;delta=1;lambda=1;zeta=1;

dis=(x(1)�2-2*x(1)*x(5)*cos(x(3)-x(7))+x(5)�2)�(3/2);

A=x(1)-x(5)*cos(x(3)-x(7));

B=x(1)*x(5)*sin(x(3)-x(7));

C=x(5)-x(1)*cos(x(3)-x(7));

D=x(1)*x(5)*sin(x(7)-x(3));

dx_dt(1)=x(2);

dx_dt(2)=mu*(A/dis)+x(1)*(x(4)�2)-(x(1)-1);

dx_dt(3)=x(4);

dx_dt(4)=(mu/((x(1))�2))*(B/dis)-(2*x(2)*x(4))/x(1);

dx_dt(5)=x(6);

dx_dt(6)=mu*lambda*(C/dis)+x(5)*((x(8))�2)-(lambda/zeta)*(x(5)-(1/delta));

dx_dt(7)=x(8);

dx_dt(8)=((mu*lambda)/((x(5))�2))*(D/dis)-(2*x(6)*x(8))/x(5);

dx_dt=transpose(dx_dt);

return

%The following code was used to analyze the presence of sensitive

%dependence on initial conditions

function chaos(tim1,tim2,k,p,tstep);
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% mu=.1;delta=1;lambda=1;zeta=1;

options=odeset('RelTol',1e-13,'Stats','on');

%x1=.943877; x5=x1;

%x1=power(2,1/3)/2+1; x5=1-power(2,1/3)/2;

x1=2; x5=2;

X01=[x1;1;pi;1;x5;1;0;-1];

tspan=[0:tstep:tim2];

tic

[t1,X1]=ode113(@dimensionlessode,tspan,X01,options);

toc

X02= X01+p;

tic

[t2,X2]=ode113(@dimensionlessode,tspan,X02,options);

toc

%Calculate liaponov exponent for x

delta=log(abs(X1(:,k)-X2(:,k)));

init=(tim1/tstep);

fin=(tim2/tstep);

plot(t1(init:fin,1),delta(init:fin,1));

xlabel('t');

ylabel('ln(delta)');

title('Exponential Divergence of Nearby Trajectories (x1)');

figure

p1=plot(t1,X1(:,k));

set(p1,'Color','blue');

hold on;

p2=plot(t1,X2(:,k));

set(p2,'Color','red');

xlabel('t');

ylabel('Values of X01,X02');

title('Exponential Divergence of Nearby Trajectories');

legend('X01','X02');

end
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