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DeepTCR is a deep learning framework for
revealing sequence concepts within T-cell
repertoires
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Deep learning algorithms have been utilized to achieve enhanced performance in pattern-

recognition tasks. The ability to learn complex patterns in data has tremendous implications

in immunogenomics. T-cell receptor (TCR) sequencing assesses the diversity of the adaptive

immune system and allows for modeling its sequence determinants of antigenicity. We

present DeepTCR, a suite of unsupervised and supervised deep learning methods able to

model highly complex TCR sequencing data by learning a joint representation of a TCR by its

CDR3 sequences and V/D/J gene usage. We demonstrate the utility of deep learning to

provide an improved ‘featurization’ of the TCR across multiple human and murine datasets,

including improved classification of antigen-specific TCRs and extraction of antigen-specific

TCRs from noisy single-cell RNA-Seq and T-cell culture-based assays. Our results highlight

the flexibility and capacity for deep neural networks to extract meaningful information from

complex immunogenomic data for both descriptive and predictive purposes.
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Next-generation sequencing (NGS) has allowed a compre-
hensive description and understanding of the complexity
encoded at the genomic level in a wide variety of organ-

isms. The applications of NGS have grown rapidly as this tech-
nology has become a molecular microscope for understanding the
genomic basis for the fundamental functions of the cell1. In
parallel to this explosion of NGS applications, in the machine
learning world, deep learning has seen a similar expansion of
applications as computational resources have grown; there exist
many opportunities to apply deep learning in genomics as the
data generated from NGS are very large and highly complex2–7.

T cell receptor sequencing (TCR-Seq) is an application of NGS
that has allowed scientists across many disciplines to characterize
the diversity of the adaptive immune response8–18. By selectively
amplifying and sequencing the highly diverse antigen-specific
CDR3 region of the β-chain of the T cell receptor, scientists have
been able to study clonal expansion as a probe for responses to
both foreign and native potential antigens19. With this new
sequencing technology, there has arisen a need to develop ana-
lytical tools to parse and draw meaningful concepts from the data
(such as those pertaining to shared sequence concepts or motifs),
since antigen-specific T cells exist within a sea of T cells with
specificities irrelevant to the microbe or tumor cell being assessed.
In recent work, investigators have applied conventional sequence
analytics, where either targeted motif searches or sequence
alignment algorithms have been used to begin parsing the data
within TCR-Seq20–22. However, identifying signal over noise is
particularly challenging in studying in vivo T cell responses such
as tumor-specific T cell responses, which are mediated by a small
proportion of the overall pool of tumor-infiltrating lymphocytes
and peripheral blood lymphocytes23–25. While these CDR3
alignment algorithms have been used successfully to assign TCRs
to a limited number of antigens after multimer sorting, they have
done so in absence of the 100–1000× background of irrelevant
specificities seen in typical in vivo T cell responses21,22.

Results
Deep learning approach. In light of this need to better featurize
TCR sequences, we turned to deep learning primarily through the
use of convolutional neural networks (CNNs) as a powerful
means to extract important features from sequencing data for
both descriptive and predictive purposes. As has been demon-
strated in previous genomic applications of deep learning, the
main advantage of CNNs in this application is the ability to learn
these sequence motifs (referred to as kernels in this context)
through some objective function given to the network4. These
learned motifs can then be used as part of a complex deep
learning model to either describe the data in a new latent space or
be used for a classification task. Furthermore, since the initial
conception and presentation of this work, multiple groups have
begun to recognize the value of deep learning and broader
machine learning techniques in this endeavor to learn these
sequence concepts of immune receptors26–30.

We present DeepTCR, a platform of both unsupervised and
supervised deep learning that is able to be applied at the level of
individual T cell receptor sequences as well as at the level of whole T
cell repertoires, which can learn patterns in the data that may be
used for both descriptive and predictive purposes. In order to
demonstrate the utility of these algorithms, we collected a variety of
TCR-Seq datasets including samples sorted by antigen
specificity20–22, samples collected from single-cell RNA-seq experi-
ments (10x_Genomics), and samples collected from a novel
experimental assay used in detecting functional expansion of
T cells31 (full dataset details in Supplementary Fig. 1). Across these
various datasets, the level of non-specific signal varies given the
technical difficulties associated with extracting true non-specific

signatures of TCR responses, and we seek to demonstrate the value
of applying deep learning in these scenarios to leverage knowledge
about sequence homology to extract the true antigen-specific signals.

TCR featurization. The main building block of all architectures
in DeepTCR utilizes a common method of TCR featurization
(Fig. 1a). First, any of the available α- or β-chain CDR3 variable
length sequences are provided to the network and are embedded
via the use of a trainable embedding layer, as described by Sid-
hom et al.7, to learn properties/features of the amino acids and
transform the sequences from a discrete to continuous numerical
space. Subsequently, a three-layer CNN is used to extract
sequence-based features from both chains. Additionally, V/D/J
gene usage is provided to the network as a categorical variable in
a “one-hot” representation. A trainable embedding layer is again
leveraged to learn features of the V/D/J gene segments and
transform them from a discrete to continuous numerical space.
These features are then concatenated within the network to
provide a joint representation of the TCR sequence through its
CDR3 sequences and V/D/J gene usage, allowing a more com-
plete representation of the T cell receptor.

A variational autoencoder provides superior antigen-specific
clustering. We first implemented this method of TCR featur-
ization within the unsupervised learning setting in order to learn
the underlying distribution of the sequence data in high-
dimensional space for the purpose of clustering TCR sequences
that likely recognize the same antigen as this is a commonly
performed analysis in TCR-Seq. In order to learn the underlying
distribution of the data in a latent space informed by our
representation of TCRs, we implemented a variational auto-
encoder (VAE) as autoencoders have been previously described as
a common dimensionality reduction/data re-representation
technique32,33. Our implementation of a VAE (Fig. 1a) starts by
taking a TCR CDR3 sequence and corresponding V/D/J gene
usage and following featurization as described previously, is
transformed into a latent space that is parametrized by a multi-
dimensional unit Gaussian distribution. The sequences and V/D/J
gene inputs are then reconstructed from the latent space through
the use of deconvolutional and fully connected layers. When the
network is trained, one can extract the latent features that
represent information from both the CDR3 sequences as well as
the V/D/J gene usage in a format that is conducive to downstream
analyses such as clustering.

In order to initially assess the value of using deep learning as
method of TCR featurization, we collected data for tetramer-
sorted antigen-specific cells for nine murine (Db-F2, Db-M45,
Db-NP, Db-PA, Db-PB1, Kb-M38, Kb-SIY, Kb-TRP2, Kb-m139)
and seven human (A1-CTELKLSDY, A1-VTEHDTLLY, A2-GIL
GFVFTL, A2-GLCTLVAML, A2-NLVPMVATV, B7-LPRRSGA
AGA, B7-TPRVTGGGAM) antigens where the ground truth
label corresponds to a particular antigen specificity for an
individual sequence20–22. We benchmarked the VAE against
featurizations of TCRs based on Hamming distances, K-mer
representation, and global sequence alignment. Prior methods
including GLIPH and TCRdist both use Hamming distances
while ImmunoMap uses a global sequence alignment20–22. Our
implementation of the Hamming distance method was directly
benchmarked on the Glanville_2017 dataset against the original
GLIPH algorithm demonstrating improved clustering accuracy as
measured in the original manuscript (Supplementary Fig. 2). For
the VAE, we benchmarked the algorithm with different types of
inputs to the network, including just the β-chain CDR3 (VAE-
Seq), just the V/D/J gene usage (VAE-VDJ), and the combination
of both inputs (VAE-Seq-VDJ). First, to benchmark these various
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Fig. 1 Unsupervised TCR sequence representation. a In order to represent a T cell receptor (TCR) we have implemented a variational autoencoder (VAE)
to take the CDR3 sequences from both the α- and β-chains along with their corresponding V, D, and J gene usage and learn a joint representation of these
inputs. The CDR3 sequences serve as input to the encoder side of the network where convolutional layers are then applied to learn sequence motifs from
these regions. As for the V/D/J gene inputs, these are represented as categorical variables which are then transformed with a trainable embedding layer to
learn a continuous representation of the gene usage of a given TCR. Finally, these inputs are concatenated together passed through fully connected layers
to result in the latent representation of the TCR. This latent representation is then sampled from in order to reconstruct the input CDR3 sequences and
V/D/J genes through the decoder side of the network. Finally, the weights of the neural network are trained via gradient descent to jointly minimize both
the reconstruction and variational loss. The trained network is then used to take a given TCR and represent it in a continuous numerical domain for
downstream analysis such as clustering. b, d In order to assess the quality of various methods of TCR featurization, we derived TCR distances from the
various featurization methods (VAE-Seq, VAE-VDJ, VAE-Seq-VDJ, Hamming, K-mer, Global-Seq-Align) and applied an agglomerative clustering algorithm
varying the number of clusters evenly from 5 to 100 and measured the variance ratio criterion of the clustering solutions and the adjusted mutual
information from the clustering solutions to the ground truth antigen labels for both nine murine and seven human antigens. Featurization methods that
encourage high-quality clusters that capture a high degree of information of the label (i.e. antigen specificity) should have a high variance ratio criterion and
high adjusted mutual information. c, e In order to benchmark the ability of various methods of TCR featurization to correctly classify a TCR sequence to its
antigen, we applied a K-Nearest-Neighbors instance-based classification algorithm (varying K evenly from 1 to 500, Supplementary Figs. 3–10) to the
derived TCR distances on the nine murine and seven human tetramer-sorted antigen-specific T cells and assessed classification performance via fivefold
cross-validation strategy, measuring AUC, Recall, Precision, and F1 Score. Illustrations for Panel a provided by Tim Phelps Copyright 2020 JHU AAM,
Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21879-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1605 | https://doi.org/10.1038/s41467-021-21879-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


methods of featurization in clustering antigen-specific TCRs, we
ran an agglomerative clustering algorithm varying the number of
clusters from 5 to 100 and then assessed the variance ratio
criterion of the clustering solutions and the adjusted mutual
information from the clustering solutions to the ground truth
antigen labels (scikit-learn)34,35. We noted that the VAE methods
maintained the highest variance ratio criterion while also
maintaining a high adjusted mutual information to the ground
truth labels for both murine and human datasets (Fig. 1b, d)
suggesting VAE-based methods form high-quality clusters that
correspond to the true antigen-specific labels. To further query
the value of these learned features in correctly clustering
sequences of the same specificity, we applied a K-Nearest
Neighbors Algorithm across a wide range of K values using a
fivefold cross-validation strategy and assessed performance
metrics of the classifier including AUC, Recall, Precision, and
F1 Score for all featurization methods (Fig. 1c, e and
Supplementary Figs. 3–10)36. We noted that across all perfor-
mance metrics, the VAE-based methods (at least one) out-
performed current state-of-the-art approaches for TCR
featurization. Furthermore, using both sequence and V/D/J gene
usage resulted in the highest AUC performance for both the
murine and human antigens, suggesting both types of inputs
provide distinct and contributary information to antigen
specificity assignment in addition to encouraging a featurization
of the TCR that is length invariant (Supplementary Fig. 11).
These results demonstrate that a deep learning approach able to
incorporate both sequence-level information and V/D/J gene
usage results in optimal antigen-specific clustering of TCR
sequences as compared to current state-of-the-art methods.

Supervised approaches improve antigen-specific classification.
While our unsupervised VAE approach demonstrated superior
performance to state-of-the-art methods through utilizing a joint
representation of the TCR from its V/D/J gene usage and
CDR3 sequence, we wanted to see if using a supervised machine
learning approach could improve performance even more (on the
same dataset as previously described for the unsupervised clas-
sification task). To do so, we developed a fully supervised model
that learns sequence-specific motifs to correctly classify sequences
by their antigen-specific labels (Fig. 2a), in which we observed
that our supervised approach improved performance over the
previously described unsupervised VAE approach (Fig. 2b) and a
more conventional Random Forest (RF) & Support Vector
Machine (SVM) (Supplementary Fig. 12)37,38. In addition, being
able to extract knowledge from the network can inform relevant
motifs for antigen-specific recognition. Therefore, we established
a method by which we could identify the most predictive (i.e.
representative) sequences for a given class and query the asso-
ciated learned kernels/motifs (Fig. 2c). Following training, we
were able to sort all the sequences by the predicted values of the
network to identify the sequences most predicted to bind a given
antigen, and then in order to identify the associated motifs to
those sequences, we assessed the association of the learned motifs
by the network to these prediction values via multinomial linear
regression where the β-coefficients of the linear model correspond
to the level of association between a given kernel/motif and the
predicted probability of a TCR being antigen specific. Motifs that
were highly associated with the predicted probability of binding a
given antigen were displayed with Logomaker39.

Supervised regression allows identification of antigen-specific
TCRs in single-cell data. The binding of a TCR to a peptide-
major histocompatibility complex (pMHC) is not usually con-
sidered a binary phenomenon but rather one that is characterized

by a binding affinity. Therefore, we proposed to use DeepTCR to
regress UMI (unique molecular identifier) counts as a proxy for
binding affinity (a caveat to this assumption being that differing
TCR expression levels can also affect the UMI counts) as available
in a second single-cell dataset published by 10x Genomics where
the binding to cognate T cells of 57,229 unique α/β pairs to
44 specific pMHC multimers and 6 negative controls was char-
acterized. DeepTCR was able to identify TCRs that have both high
observed UMI counts and a predictive signature, providing a tool
to better isolate antigen-specific TCRs (Fig. 3a). To independently
validate whether these models trained on single-cell data learned
salient antigen-specific features of the immune response, we col-
lected experimentally validated CDR3 β sequences from the
McPAS-TCR database for Flu-MP (influenza derived), BMLF1
(EBV derived), and MART1 (melanoma derived) epitopes and
applied the respective models trained on the 10x Genomics dataset
on these TCRs. We specifically removed any TCR sequences from
this independent validation cohort that were in the data used to
train the models. We observed that these models were able to
predict antigen-specific TCRs in the independent and experi-
mentally validated dataset from the McPAS-TCR database with a
high level of accuracy (Fig. 3b), which suggests that despite the
inherent noise of a tetramer-based assay on which the models
were trained, our algorithm could extract the salient antigen-
specific features of the TCR.

Perturbation analysis reveals important residues. One of the
advantages of training a predictive model is the ability to perturb
its inputs and measure the change in the output of the model; in
other words, being able to conduct a sensitivity analysis.
Assuming the model has correctly learned the rules of antigen
specificity, one can identify residues in a TCR sequence that are
highly sensitive to change in a causal fashion and thus describe
the relative importance of any given residue to antigen-specific
binding. In order to demonstrate the utility of such an approach,
we collected crystallography data from The Protein Data Bank for
Flu-MP (1OGA) and BMLF1 (3O4L), two antigens for which we
had trained a model to predict binding affinity from the 10x
Genomics dataset40–42. We first took the sequence data from the
CDR3 regions of these TCRs and permuted each position of each
sequence with all other 19 amino acid and obtained predicted
affinities for each single amino acid mutation in order to see
which residues were sensitive to change (Fig. 3c). We first noted
that certain positions were highly sensitive to any change in
amino acid (i.e. R at β-6 in Flu-MP), suggesting the importance of
that particular residue for binding in the context of that TCR. We
also observed that we could assess the contribution of the α- vs β-
chain to specificity with this analysis by comparing the general
sensitivity to perturbation between the two chains. For example,
we noted that the Flu-MP TCR is more sensitive to perturbation
in the β-chain whereas the BMLF1 epitope shows similar sensi-
tivity to perturbations in either the α- or β-chain. Finally, while
most perturbations lowered the predictive binding affinity of the
given TCR to its cognate antigen, we noted that for the BMLF1
TCR, the G at β-6 demonstrated that many perturbations at that
site would actually increase the binding affinity of this TCR,
suggesting that this approach could also be utilized for TCR
engineering to design high-affinity TCRs. To represent this
information about each residue in a more compact visualization,
we created Residue Sensitivity Logos (RSLs) which allow for rapid
comparison of many sequences in a logo type format where the
size of the residue corresponds to sensitivity at that particular
position and the color scheme represents the average direction of
changes at that position to the binding affinity (Fig. 3d). For
example, the β-6 in Flu-MP is large because it is sensitive to any
perturbation and it is colored red because most perturbations at
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that site would result in a lower binding affinity whereas β-6 in
the BMLF1 TCR is also large because it is also sensitive to per-
turbation but it is colored blue because most perturbations at that
site would increase the binding affinity. Finally, we correlated
information from these RSLs to the crystal structure (Fig. 3e). By
assessing how well the quantified sensitivity at a given position
predicted whether that position was a contact residue (AUC:
1OGA= 0.824, 3O4L= 0.907), we demonstrated that the infor-
mation learned by our neural network was congruent with known
important residues in these respective TCRs (Supplementary
Fig. 13)22. These results suggest that by combining the high-
throughput nature of single-cell technology with deep learning as
illustrated in these examples, one can obtain a robust under-
standing of the sequence determinants of TCR antigenicity as well
as provide guidance for TCR engineering.

TCR repertoire classification identifies TCR signatures of an
elite suppressor of HIV. Building on the supervised sequence
classifier, we then wanted to design an architecture that could

learn from a label applied to a whole repertoire of TCR sequences,
most of which are irrelevant to the antigen of interest. This type
of problem can be poised as “weakly supervised” as the repertoire
label may only apply to a subset of the sequences43. Our super-
vised repertoire classifier was formulated as a supervised multi-
instance learning algorithm that is able to extract meaningful
concepts that may lie within large repertoires of many sequences
(Fig. 4a). This scenario is akin to many use-cases of TCR-Seq
where ground truth labels (i.e. experimental exposures, therapies,
clinical outcomes) apply to an entire repertoire of TCR sequences
and not to any individual sequence. To test the utility of this
approach, we collected data from published TCR-Seq data of an
assay where T cells from an elite suppressor (ES8) of HIV were
cultured with autologous HIV-1 Gag and Nef epitope variants
and sequenced after culture to determine the immune repertoire
against each epitope31,44–48. In the original work, TCR sequences
were deemed to be antigen specific if they met certain statistical
requirements based on the read count of a given sequence, a
proxy for clonal expansion. However, given that T cell expansion
in culture in the presence of stimulatory cytokines can occur

Fig. 2 Supervised TCR sequence classification. a Network architecture schema: Previously described TCR featurization block is implemented to featurize a
TCR sequence and then either output a label (i.e. antigen specificity) or continuous regressed value (i.e. affinity measurement). b Supervised TCR
Sequence classifier was trained/tested on nine murine antigen-specific TCR sequences via a 100-fold Monte-Carlo cross-validation strategy where
classification performance, assessed via AUC measurements, was measured on the test sets. Classification performance was benchmarked against
DeepTCRs unsupervised VAE instance-based learning classifier as shown here and classical Random Forest (RF) and Support Vector Machine (SVM)
algorithms (Supplementary Fig. 12). c Representative Db and Kb murine antigens where top predicted CDR3 sequences are shown via multiple-sequence
alignment and learned kernels for these representative sequences are visualized below the alignment. Illustrations for Panel a provided by Tim Phelps
Copyright 2020 JHU AAM, Department of Art as Applied to Medicine, The Johns Hopkins University School of Medicine.
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Fig. 3 Supervised TCR sequence regression. a In order to test the ability of a supervised deep learning method to learn and regress continuous value
outputs, we collected published single-cell data from 10x Genomics where 57,229 unique α/β pairs were collected with a count-based measurement (as a
proxy for binding affinity) to 44 specific peptide-MHC (pMHC) multimers and 6 negative controls. A fivefold cross-validation strategy was employed on
every antigen to obtain independently predicted regression values for every α/β pair to a given antigen and predicted vs actual counts are shown for a
select three antigens. b For the shown epitopes, experimentally derived antigen-specific CDR3 β TCR sequences were collected from the McPAS-TCR
database and models trained on the 10x Genomics dataset were applied to this independent dataset of TCRs to assess the classification performance via
examining the ROC curves and their corresponding AUCs. c For the Flu-MP and BMLF1 epitopes where data from the 10x Genomics dataset were available
to train our models, crystal structures and their corresponding TCR CDR3 sequences were also collected from The Protein Data Bank and permutation
analysis was conducted to analyze the sensitivity of each residue to the predicted binding affinity from our deep learning model. The results of this model
are shown for the corresponding α- and β-chain for both antigens. d To create compact representations of the information in our residue sensitivity
analysis, we propose a visualization of this information termed a Residue Sensitivity Logo (RSL). e Crystal structures highlighting the relevant α (blue) and β
(red) CDR3 regions. Predictive performance of Residue Sensitivity analysis to identify known contact residues shown in Supplementary Fig. 13.
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independent of antigen recognition, we wanted to take advantage
of deep learning to leverage the TCR sequence and not just the
read count in determining whether an epitope elicited an antigen-
specific immune response. We hypothesized that if a well had an
antigen-specific response, its T cell repertoire should be distin-
guishable via its sequence concepts from those not specific for the

stimulating peptide(s) (CEF, AY9, No Peptide). In contrast to
previously described models herein, our model would make a
prediction about the entire T cell repertoire in a well and not any
individual sequence, as we would not expect the majority of
T cells within a well expanding to a given epitope to be antigen
specific. Therefore, we trained a repertoire classifier to predict if

Fig. 4 Supervised TCR repertoire classification. a Multiple-Instance Learner (MIL) for classifying a TCR repertoire. Following previously described the TCR
Featurization Block, we implement a multi-head attention mechanism to make sequence assignments to concepts within the sample. The number of
concepts in the model is a hyperparameter, which can be varied by the user depending on the heterogeneity expected in the repertoires. Of note, this
assignment of a sequence to a concept is done through an adaptive activation function that outputs a value between 0 and 1, allowing the network to put
attention on the sequences that are relevant to the learning task. When taking the average of these assignments over all the cells in a repertoire, this results
in a value within the neural network that directly corresponds to the proportion of the repertoire that is described by that learned concept. These proportions
of concepts in the repertoire are then sent into a final traditional classification layer. b In order to train TCR Repertoire Classifier on T Cell culture data, the
model was given triplicates for the cognate epitope as well as non-cognate controls (CEF, AY9, No Peptide conditions). The model is trained to learn the
distinguishing TCR sequence features of the cognate epitope from the controls through 100 Monte-Carlo simulations where the model is trained on two out
of the three triplicates and performance is assessed on the left-out well for each set of conditions, ensuring that any predictions used for downstream
interpretation have been obtained from data not used in training. c If the model is able to distinguish the cognate epitope from the controls with a high level
of performance assessed by ROC, the epitope is considered to have elicited an antigen-specific response. d The effect size of this response is then quantified
by the difference in the magnitude of the average predictions for wells in cognate condition vs the average predictions for wells in the non-cognate or control
conditions. e Following training of the model, sequence-level predictions can be obtained by running each TCR sequence in the cognate wells through the
repertoire classifier allowing extraction of the antigen-specific sequences from the background noise of the T cell culture. Residue Sensitivity Logos are
shown for select antigen-specific TCRs. Illustrations for panel a provided by Tim Phelps Copyright 2020 JHU AAM, Department of Art as Applied to
Medicine, The Johns Hopkins University School of Medicine.
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the well had been treated by the cognate epitope, or non-cognate
conditions (CEF, AY9, No Peptide) given its T cell repertoire
(Fig. 4b). If a model could distinguish an experimental/cognate
well from the controls based on the T cell repertoire, it would be
deemed to be antigen specific. A representative positive cognate
epitope is shown where the AUC for the cognate epitope in this
classification problem is 1.0, suggesting that the repertoire against
this epitope is statistically distinguishable from the controls
leading us to believe that this is an antigen-specific response
(Fig. 4c). Furthermore, we can measure the magnitude of the
difference between the cognate epitope repertoire and the con-
trols by measuring the difference between the average predictions
for epitope-specific wells vs controls, termed Delta Prediction
(Fig. 4d). While we utilize the AUC as a non-parametric rank
based statistical test, the difference in average prediction values
between the antigen-specific well and controls is a measure of the
magnitude of this difference or the effect size. Once the classifier
has been trained, single sequence predictions can be obtained by
running each sequence separately through the trained model.
This allows us to identify the most predictive sequences against a
given epitope. As can be seen for the example epitope, the highly
predictive sequences represent only a minority of unique TCRs in
the antigen-specific wells and are often not the sequences with the
highest read counts (Fig. 4e).

When we ran this pipeline across the 25 tested epitopes, we
noted that our model predicted that 19 of these epitopes
(covering 5 out of the 6 epitope families) elicited highly
distinguishable sequence features of the T cell repertoire within
this elite suppressor when selecting for epitopes that passed a
statistical threshold for AUC above 0.90 between the antigen-
specific wells and controls (Fig. 5a, b). Furthermore, when
applying this trained repertoire classifier for TCR-level inference,
we noted that 17/18 (Fisher’s exact test: p < 1e−10) of the
originally reported experimentally validated TCR-peptide pairs
were correctly predicted to be cognate binders (Supplementary
Fig. 14)31.

Given the breadth of the epitopes this particular elite
suppressor responded to, we wanted to characterize the immune
repertoire that responded to these epitopes and whether the
number and extent of escape variants affected the sequence
diversity of the immune repertoire. In order to ask this question,
we took epitopes from the epitope families that had at least two
autologous variants with detectable immune responses (via
previously described method) and conducted all pairwise
comparisons of these escape variants within a given epitope
family. By training a model for each pair of epitopes within an
epitope family, we could measure how distinguishable the
repertoire was between any two given variants. A model that
could not distinguish between two variants would suggest that the
immune repertoire was homologous and thus cross-reactive to
both of these variants. On the contrary, if a model could
distinguish the immune repertoire between variants, then it
would suggest that divergent immune responses were elicited by
these variants.

For ES8, the original investigators queried 1 consensus and 11
escape variants of the GAG TW10 epitope family, 10 of which
this particular elite suppressor had acquired and as detected via
sensitive RT-PCR in either plasma or pro-viral samples,
representing the epitope family of highest acquired escape
variants. Following training models on all pairwise variants as
described previously, a clustered heatmap was used to visualize
the pairwise 1-Delta Predictions to compare the immune
repertoires of these 10 autologous epitope variants (Fig. 5c)
where a large value denotes similarity between the any pair of
repertoires. When examining this clustered heatmap, we noted
that the consensus epitope (denoted by *) was distinguishable

from most the acquired escape variants in ES8. This finding was
consistent with the original IFN-γ based work which, for
example, demonstrated that the Q244T/I247V/G238A triple
mutant could not be recognized by other elite suppressors who
had immune responses to the consensus epitope, suggesting that
this immune response was novel45,49.

We then desired to examine the differences between the
immune responses to the GAG TW10 epitope at the individual
sequence level so we collected all positive TCRs from our initial
screen of these 10 autologous variants and trained a sequence
classifier on this “de-noised” data to learn the distinguishing
features at the TCR sequence level (Supplementary Fig. 15).
Following training this in this multi-class fashion, we extracted the
per-sequence predictions across all classes and applied a UMAP
dimensionality reduction to visualize the sequences for each
variant (Fig. 5d)50. Interestingly, when comparing the immune
repertoires of the escape variants to the consensus epitope, we
noted that while the consensus epitope elicited a relatively focused
repertoire, many of the escape variants elicited rather hetero-
geneous responses based on TCR diversity. Despite many of these
escape variants eliciting immune responses, as suggested by our
method and validated by previous IFN-γ assays, these variants due
to their structural heterogeneity may represent less specific
responses. Finally, we wanted to demonstrate the ability of our
method to also visualize the differences between any pair of
immune responses, so we created RSLs for the consensus epitope
(TSTLQEQIGW) and the “triple-mutant” variant (TSTLTEQ-
VAW) demonstrating the differences between these two immune
responses (Fig. 5e). These findings lead us to believe that the GAG
TW10 epitope is under considerable immune pressure where
escape variants often create TCR repertoires that are not only
distinguishable from the repertoire against the consensus epitope
but also are far more heterogeneous, suggesting less specific
immune responses are generated against these escape variants.

In contrast to the GAG TW10 epitope family, the GAG IW9
family had only two variants (the consensus epitope -
ISPRTLNAW and the I147M escape variant - MSPRTLNAW)
that both generated immune responses. However, these responses
were highly homologous given a trained repertoire classifier could
not distinguish between wells of either condition, suggesting a
cross-reactive repertoire to both these escape variants (Supple-
mentary Fig. 16). This finding was consistent with the initial IFN-
γ based approaches that found both the consensus and the escape
variant both generated immune responses and furthermore, the
I127M escape variant was recognized by other subjects who did
not have that acquired mutation, confirming our model learned
the true cross-reactive nature of this repertoire45. These findings
suggest that, as has been hypothesized in prior work, certain
epitopes may be under stronger immune pressure than others.
Our results demonstrate the power of leveraging deep learning on
routine T cell culture coupled with TCR sequencing to identify
antigen-specific responses that not only can detect the presence of
an immune response but also characterize the TCR sequence
diversity of that response. However, while our methods cannot
prove or make claims around the nature of the immune pressure
and its role in HIV pathogenesis, we do demonstrate here the
utility for such an approach to generate novel hypotheses that
were possibly previously unappreciated.

Discussion
NGS has become one of the largest sources of big data in the
biological sciences, and deep learning is a promising modality for
analyzing this kind of big data. In this work, we present
DeepTCR, a collection of unsupervised and supervised deep
learning approaches to characterize TCR-Seq data for both

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21879-w

8 NATURE COMMUNICATIONS |         (2021) 12:1605 | https://doi.org/10.1038/s41467-021-21879-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


descriptive and predictive purposes. We first demonstrate that by
using a VAE to do unsupervised learning with an improved
method of TCR featurization, we can better cluster antigen-
specific TCRs. We believe that the real novelty of this approach is
allow for joint representations of data inputs of different types
(i.e. sequence vs categorical data). While previous methods
including GLIPH have used V/D/J information to strengthen the
certainty of any given cluster being antigen specific, the initial
clustering algorithm does not take into account the V/D/J gene
information. In contrast, the TCRdist algorithm does include this
information more directly into the computation of its distance
metric by incorporating sequence information from the CDR1
and CDR2 regions; the only limitation being this sequence
information is most often not collected by current commercial
TCR-Seq platforms that often only report the CDR3 sequence
and respective V/D/J gene usage. While we only explore

featurizing a TCR by its CDR3 sequence and V/D/J gene usage,
one can imagine this framework can be expanded to include other
information about a TCR such as human leukocyte antigen-
context within which it was observed within or even other types
of sample-level data such as experimental conditions or treat-
ments a given repertoire was exposed to. Leveraging deep
learning allows one the flexibility to generate a rich feature space
that can take into account many types of data.

More significantly, we develop supervised methods in appli-
cations where labels can greatly help the learning process, such as
when there is buried signal in a large sample of sequences. TCR
repertoire data are biologically noisy as irrelevant T cells often
engage in immune surveillance and can be present without having
an antigen-specific role in an immune response. This can make
analyses very difficult in the setting of in vivo repertoires where
the relevant immune response may only play a small role in the

Fig. 5 Characterization of TCR repertoire to HIV-specific epitopes. a Table summarizing results from all epitopes screened for antigen-specific immune
responses via DeepTCR repertoire classifier. Consensus epitopes are denoted in red. Epitopes that were considered to be statistically significant for antigen-
specific expansion via AUC > 0.90 are denoted in bold lettering. b Delta Predictions vs AUC shown for all epitopes screened for antigen-specific immune
responses via DeepTCRs repertoire classifier. c All detected variants in ES8 for the GAG TW10 epitope family were collected and DeepTCRs repertoire
classifier was ran for all pairwise combinations of these variants. 1-Delta Predictions are plotted in clustered heatmap for simultaneous comparison of
immune repertoires where a large value denotes similarity between repertoires. * denotes the consensus sequence. d DeepTCR sequence classifier was
trained in a multi-class fashion (Supplementary Fig. 15) on the positive predicted sequences (prob > 0.99) from the initial screen against non-cognate
epitopes to learn TCR sequence-specific features that could distinguish responses between variants of the GAG TW10 epitope family. UMAP dimensionality
reduction was applied to the per-sequence prediction values to generate visualizations for the antigen-specific TCRs. Intensity of coloring corresponds to
density as computed by Gaussian kernel density estimation. e Residue Sensitivity Logos were produced for the consensus and triple-mutant epitope to
highlight structural differences of the immune response.
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immune response23. Furthermore, the most abundant clones
within an in vivo response may not necessarily be relevant to any
given immune response as immune responses to common viral
epitopes can be at high circulating frequencies51. Being able to
leverage information about the CDR3 sequence can be powerful
in extracting signal from the noise not only in in vivo analyses but
also in in vitro assays. We demonstrate within this work that
when applying deep learning to inherently noisy tetramer-specific
or T cell culture expanded clones, we can possibly “de-noise”
these assays to isolate true antigen-specific TCRs, showing the
ability for deep learning models to extract antigen-specific signal
from the background noise of the innate TCR repertoire.

Significant limitations still exist within our analysis and more
broadly within the study of immune repertoire. The first being the
few and minimally curated datasets that exist at this time. For
example, Glanville et al.22 and Dash et al.21, while publishing
high-quality datasets that link TCR to epitope, only assayed a
handful of antigens while the immune repertoire has the potential
to recognize thousands of antigens with extremely high resolu-
tion. While we demonstrate in the HIV dataset that our model
can potentially differentiate immune repertoires against epitopes
with high homology, datasets do not exist at this time that link
TCR to a set of highly homologous epitopes to test our methods
against. We imagine in the future, technologies such as the 10x
Genomics platform, previously presented in this publication, will
help rapidly create the larger datasets needed to better link TCR
to epitope. Furthermore, datasets to train and test repertoire
classifiers are even more lacking. While the field often assumes
that certain exposures or pathology shape the immune repertoire
(as in CMV exposed individuals)14, the extent of this change is
still largely unknown. Arguably, methods such as the ones shown
in this paper may be uniquely able to discover these changes for
the first time. Additionally, while the data that exist to train these
models comes through high-throughput methods such as tetra-
mer sorting21,22 or T cell stimulation assays31, these methods
often introduce some level of noise due to non-specific binding or
stimulation. Unfortunately, gold standard methods that would
require isolation and cloning of T cell receptors to specifically
interrogate the specificity of a given TCR are highly laborious and
low throughput. And while findings from our proposed methods
would ultimately need to be validated through these more rig-
orous methods, we do believe that these proposed methods are
capable of learning the salient signal from the noise present as is
evidenced from the predictive power of these models presented in
this work. Finally, Google’s DeepMind recently demonstrated
remarkable improvements in performance to predict full three-
dimensional (3D) structure from linear sequences of proteins
through the use of a deep learning52,53. Since T cell receptor
function is ultimately tied to its 3D structure (a derivative from
the linear sequence) and its interaction with its cognate epitope, it
is plausible that our models are capable of learning information
about local 3D structure of the T cell receptor.

As sequencing-based technologies only become more ubiqui-
tous, algorithms such as the one presented in this work will find
further utility in identifying and characterizing relevant biological
signal, yielding new understandings of complex genomic concepts
hidden within this vast amount of data.

Methods
Data curation. TCR sequencing files were collected as raw tsv/csv formatted files
(Supplementary Fig. 1) from the various sources cited within the manuscript.
Sequencing files were parsed to take the amino acid sequence of the CDR3 after
removing unproductive sequences. Clones with different nucleotide sequences but
the same amino acid sequence were aggregated together under one amino acid
sequence and their reads were summed to determine their relative abundance.
Within the parsing code, we additionally specified to ignore sequences that used
non-IUPAC letters (*,X,O) and removed sequences that were greater than 40

amino acids in length. For the purpose of the algorithm, the maximum length can
be altered but we chose 40 as we did not expect any real sequences to be longer
than this length.

Data transformations. In order to allow a neural network to train from sequence
data, we converted the amino acids to numbers between 0 and 19 representing the
20 possible amino acids. These were then one-hot encoded as to provide a cate-
gorical and discrete representation of the amino acids in numerical space. This
process was applied prior to all networks being trained. For analyses where V/D/J
gene usage, these genes were represented as categorical variables and one-hot
encoded as inputs for the neural network.

TCR featurization block. The core of all deep learning architectures is the TCR
Featurization Block which takes the various sequence data for a given TCR and
transforms it to a latent joint representation of all its inputs. For the α/β
CDR3 sequences, we take variable length right-padded sequence data which has
been encoded in one-hot representation and first apply an embedding layer which
transforms this one-hot representation to a trainable continuous representation of
dimensionality 64. This embedding layer learns features of each amino acid
allowing the network to learn amino acids which may play similar roles in antigen-
binding in the context of the TCR. Following this transformation, three convolu-
tional layers are applied to the continuous representation of the CDR3 sequences.
The kernel, stride sizes, and number of feature maps were (kernel: 5, stride: 1,
feature maps: 32), (kernel: 3, stride: 3, feature maps: 64), (kernel: 3, stride: 3, feature
maps: 128) respectively for the three layers. If the convolutional stack is being used
within the VAE, the output of the final convolutional layer is flattened. If the
convolutional stack is being used within either the supervised sequence classifier or
repertoire classifier, the global max pooling operation is applied across the length of
the sequence to provide the ability for the network to learn length-invariant motifs.

If V/D/J gene information is provided as an input to the network, this data are
represented first as categorical variable with a one-hot encoding to the network.
Once again, we apply a trainable embedding layer which transforms this one-hot
representation to a continuous representation of dimensionality 48. This
transformation produces the featurization of the V/D/J genes.

After all inputs to the network have been featurized, they are concatenated and
this completes the TCR Featurization Block where a TCR is described by a vector of
continuous variables that describe all of the possible CDR3 sequences and
corresponding V/D/J gene usage. This TCR Featurization Block is used as the main
building block for all networks described and used in the manuscript.

Training VAE. In order to train the VAE, following creation of the computational
graph as described in the manuscript and main figure, we applied an Adam
Optimizer (learning rate= 0.001) to minimize a reconstruction loss and a varia-
tional loss. The reconstruction loss is the cross-entropy loss between the recon-
structed sequence (S) and the one-hot encoded tensor of the input sequence (L)
across the ith position in the sequence (1). The variational loss is the
Kullback–Leibler (KL) divergence between the distributions of the latent variables
and a unit Gaussian (2).

Rloss ¼ �
X
i

Li logðSiÞ ð1Þ

V loss ¼ DKLðNðμðXÞ; σðXÞÞjjNð0; 1ÞÞ ð2Þ
The variational loss serves as a regularizer to the network as it prevents

overfitting of the network and direct memorization of sequence to latent space and
allows for meaningful downstream clustering of the sequences in their latent
representation32,33. The VAE was trained until convergence criteria were met.
Features for all sequences were then extracted from the latent space and used for
downstream analyses.

Quantifying TCR distance. In order to quantify the distance between TCR
sequences from the latent representations produced by the VAE, we computed a
Euclidean distance in this space to measure the distance between any two TCR
sequences. For the K-mer representation, we also used a Euclidean distance on the
K-mer count vector to measure the distance between any two TCR sequences. To
compute Hamming distance, we used the scipy.pdist function on the integer
representation of the sequences. For the global sequence alignment-based distance,
we computed a symmetric distance based as previously described by Sidhom et al.
in the ImmunoMap algorithm. Global sequence alignment was computed with
BioPython’s pairwise2.align.globalxx functionality20.

Clustering antigen-specific TCR sequences. To assess the quality of the various
featurization methods described in the study, we first applied an agglomerative
clustering algorithm (scikit-learn) to the previously described TCR distances from
the various VAE methods along with the Hamming, K-mer, and Global Sequence
Alignment distance metrics. We varied the number of clusters for the algorithm
from 5 to 100 clusters and measured the Variance Ratio Criterion (Calinski and
Harabasz score) as well as the Adjusted Mutual Information across all the clus-
tering solutions for all the described featurization methods34,35. By choosing these
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two metrics to quantify the robustness of the clustering solutions on the latent
features, we first assessed the ratio of the within-cluster dispersion to the between-
cluster dispersion as a measure for the “compactness” of the clustering solution via
the Variance Ratio Criterion and then quantified using information theoretic
principles to quantitate how much of the information about the antigen specificity
was being captured by the clustering solution. Methods that provide a feature space
optimal for applying clustering algorithms would have a high Variance Ratio
Criterion as well as a high Adjusted Mutual Information. These metrics were
applied to both the murine and human antigen-specific TCRs to compare the
various featurization methods.

Training K-nearest neighbor (KNN) algorithm on TCR sequences. In order to
assess the quality of the various featurization methods describes in the study, we
also applied a KNN on to the previously described TCR distances derived from the
various VAE methods along with the Hamming, K-mer, and Global Sequence
Alignment distance metrics. We employed a fivefold cross-validation strategy to
split the data and then assessed performance on the left-out fold of the data.
Furthermore, we varied the value of K in the KNN evenly from 1 to 500 in order to
further assess the robustness of the featurization/KNN across a wide variety of K
values. We were then able to do paired statistical analyses at each value of K to
assess which featurization methods allowed for best downstream performance of
the classifier to assign a TCR sequence to its correct cognate antigen.

Training receptor classifier. In order to train the receptor classifier, we use the
TCR Featurization Block as described previously to featurize the input data which
can include any or all of α/β CDR3 and the corresponding V/D/J gene usage. The
main difference in this featurization is that for the CDR3 sequences, we employ a
global max pooling operation after the final convolutional layer to allow for
translational invariance of motifs within the CDR3 sequence. The final feature
space is directly sent to a classification layer where the number of final nodes is
equivalent to the number of classes. In the case of a regression task where the
receptor is being regressed to a continuous label, the feature space is sent to a single
node. In the case of a classification task, the network is trained using an Adam
Optimizer (learning rate= 0.001) to minimize the cross-entropy loss between the
soft-maxed logits and the one-hot encoded representation of the discrete catego-
rical outputs of the network. In the case of a regression task, the network is trained
to minimize the mean squared error loss between the output of the final node in
the network at the continuous label. Training was conducted by using 75% of the
data for the training set, and 25% for validation and testing. The validation group
of sequences was used to implement an early stopping algorithm.

Training repertoire classifier. Designing an architecture for whole sample multi-
instance classification presented unique challenges that were specific to the way
TCR-Seq data is generated. Following featurization via the described TCR Fea-
turization Block, we needed an architecture that could handle applying a label to a
collection of these featurized sequences. In order to solve this multi-instance
problem, we developed a multi-head attention mechanism that uses an adaptive
activation function to make an assignment for each TCR sequence to a learned
concept within the data. In order to design this activation function, we based it on
the inverse square root unit (ISRU) function which is an algebraic form of the
sigmoid function. While activation functions in neural networks are often fixed and
have no trainable parameters (i.e. relu, sigmoid), we noted difficulty in training a
sigmoid function to make an assignment between 0 and 1 due to the commonly
cited problem of diminishing gradients with the use of sigmoid activation func-
tions. By creating an adaptive ISRU function with a trainable α and β parameter
(3), we found this improved the training of our network and allowed us to make a
sequence-level assignment between 0 and 1 for each sequence to each learned
concept in the model.

AISRU ¼ Lþ H � L
2

� �
x

ðaþ ðx2ÞbÞ
1
2b

 !
ð3Þ

L ¼ 0; H ¼ 1; a > 0; b≥ 1

This average of these assignments is taken over the sample to come up with
what can be interpreted as the proportion of the repertoire that contains the
learned concept. This vector of proportion features is then fed directly into the
classification layer. The network is trained with an Adam Optimizer (learning rate
= 0.001) to minimize the cross-entropy loss between the soft-maxed logits and the
one-hot encoded representation of the discrete categorical outputs of the network.

Motif identification. Neural networks are often treated as “black boxes” where their
value is largely in their predictive performance and not in understanding how the
neural network is accomplishing its task. However, in the area of the biological
sciences, there is not only the desire to create predictive tools but use these tools to
inform our own understanding of the mechanisms at play. This area of research is
often termed as improving the “explainability” of neural networks. In biological
sequence analytics such as DeepTCR, investigators want to be able to extract the
features/motifs the neural network learned to accomplish its task. For the supervised

learning architectures, we were able to identify motifs the network had learned by
extracting the indices of where the kernels were activated following the global max
pooling layer. The result of this operation is the network not only extracts the
maximum value of a kernel over the length of the sequence but also deduces its
position within the sequence. This can be then used to not only pick up which
features are activated on a given sequence but where in the sequence this activation
occurs, allowing us to identify the motifs that any given neuron in the net is learning.

Statistical tests and machine learning models. All statistical tests applied to data
were implemented with the scipy.stats module. Classical machine learning tech-
niques and performance metrics were implemented with scikit-learn.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data analyzed in this manuscript can be found at https://github.com/sidhomj/
DeepTCR as well as in the original publications that generated the data20–22,31. The 10X
Genomics dataset used to train the supervised sequence regression can be found at
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-
immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-
phenotype/.

Code availability
DeepTCR was written using Google’s TensorFlowTM deep learning library (https://
github.com/tensorflow/tensorflow) and is available as a python package. Source code,
comprehensive documentation, use-case tutorials, and all ancillary code (including all
deep learning hyperparameters) to recreate all the figures in the text along with all data
and results presented in this manuscript can be found at https://github.com/sidhomj/
DeepTCR54. DeepTCR can either be installed directly from Github or from PyPI at
https://pypi.org/project/DeepTCR/.

Received: 27 May 2020; Accepted: 15 February 2021;

References
1. Buermans, H. & Den Dunnen, J. Next generation sequencing technology:

advances and applications. Biochim. Biophys. Acta 1842, 1932–1941 (2014).
2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444

(2015).
3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep

convolutional neural networks. Commun. ACM 60, 84–90 (2017).
4. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the

sequence specificities of DNA-and RNA-binding proteins by deep learning.
Nat. Biotechnol. 33, 831–838 (2015).

5. Zeng, H., Edwards, M. D., Liu, G. & Gifford, D. K. Convolutional neural
network architectures for predicting DNA–protein binding. Bioinformatics 32,
i121–i127 (2016).

6. Han, Y. & Kim, D. Deep convolutional neural networks for pan-specific
peptide-MHC class I binding prediction. BMC Bioinformatics 18, 585 (2017).

7. Sidhom, J.-W., Pardoll, D. & Baras, A. AI-MHC: an allele-integrated deep
learning framework for improving class I & class II HLA-binding predictions.
Preprint at https://www.biorxiv.org/content/10.1101/318881v1.full.pdf (2018).

8. Gerlinger, M. et al. Ultra-deep T cell receptor sequencing reveals the
complexity and intratumour heterogeneity of T cell clones in renal cell
carcinomas. J. Pathol. 231, 424–432 (2013).

9. Wang, G. C., Dash, P., McCullers, J. A., Doherty, P. C. & Thomas, P. G. T cell
receptor αβ diversity inversely correlates with pathogen-specific antibody
levels in human cytomegalovirus infection. Sci. Transl. Med. 4,
128ra42–128ra42 (2012).

10. Planas, R., Metz, I., Martin, R. & Sospedra, M. Detailed characterization of T
cell receptor repertoires in multiple sclerosis brain lesions. Front. Immunol. 9,
509 (2018).

11. Mansfield, A. S. et al. Contraction of T cell richness in lung cancer brain
metastases. Sci. Rep. 8, 1–9 (2018).

12. Formenti, S. C. et al. Radiotherapy induces responses of lung cancer to CTLA-
4 blockade. Nat. Med. 24, 1845–1851 (2018).

13. Friedensohn, S., Khan, T. A. & Reddy, S. T. Advanced methodologies in high-
throughput sequencing of immune repertoires. Trends Biotechnol. 35,
203–214 (2017).

14. Emerson, R. O. et al. Immunosequencing identifies signatures of
cytomegalovirus exposure history and HLA-mediated effects on the T cell
repertoire. Nat. Genet. 49, 659–665 (2017).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21879-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1605 | https://doi.org/10.1038/s41467-021-21879-w |www.nature.com/naturecommunications 11

https://github.com/sidhomj/DeepTCR
https://github.com/sidhomj/DeepTCR
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://github.com/sidhomj/DeepTCR
https://github.com/sidhomj/DeepTCR
https://pypi.org/project/DeepTCR/
https://www.biorxiv.org/content/10.1101/318881v1.full.pdf
www.nature.com/naturecommunications
www.nature.com/naturecommunications


15. Beausang, J. F. et al. T cell receptor sequencing of early-stage breast cancer
tumors identifies altered clonal structure of the T cell repertoire. Proc. Natl
Acad. Sci. USA 114, E10409–E10417 (2017).

16. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers.
Nat. Genet. 48, 725–732 (2016).

17. Emerson, R. et al. Estimating the ratio of CD4+ to CD8+ T cells using high-
throughput sequence data. J. Immunol. Methods 391, 14–21 (2013).

18. Woodsworth, D. J., Castellarin, M. & Holt, R. A. Sequence analysis of t-cell
repertoires in health and disease. Genome Med. 5, 98 (2013).

19. Danilova, L. et al. The mutation-associated neoantigen functional expansion
of specific T cells (manafest) assay: a sensitive platform for monitoring
antitumor immunity. Cancer Immunol. Res. 6, 888–899 (2018).

20. Sidhom, J.-W. et al. Immunomap: a bioinformatics tool for t-cell repertoire
analysis. Cancer Immunol. Res. 6, 151–162 (2018).

21. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell
receptor repertoires. Nature 547, 89–93 (2017).

22. Glanville, J. et al. Identifying specificity groups in the T cell receptor
repertoire. Nature 547, 94–98 (2017).

23. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR
repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

24. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically
distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

25. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in
the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

26. Moris, P. et al. Current challenges for epitope-agnostic tcr interaction
prediction and a new perspective derived from image classification. Preprint at
https://www.biorxiv.org/content/10.1101/2019.12.18.880146v2.full (2020).

27. Widrich, M. et al. Modern hopfield networks and attention for immune
repertoire classification. Preprint at https://arxiv.org/abs/2007.13505 (2020).

28. Springer, I., Besser, H., Tickotsky-Moskovitz, N., Dvorkin, S. & Louzoun, Y.
Prediction of specific tcr-peptide binding from large dictionaries of tcr-peptide
pairs. Front. Immunol. 11, 1803 (2020).

29. Ostmeyer, J. et al. Statistical classifiers for diagnosing disease from immune
repertoires: a case study using multiple sclerosis. BMC Bioinformatics 18, 1–10
(2017).

30. Tong, Y. et al. Sete: Sequence-based ensemble learning approach for tcr
epitope binding prediction. Comput. Biol. Chem. 87, 107281 (2020).

31. Chan, H. Y. et al. At cell receptor sequencing-based assay identifies cross-
reactive recall CD8+ T cell clonotypes against autologous HIV-1 epitope
variants. Front. Immunol. 11, 591 (2020).

32. Doersch, C. Tutorial on variational autoencoders. Preprint at https://arxiv.org/
abs/1606.05908 (2016).

33. Pu, Y. et al. Variational autoencoder for deep learning of images, labels and
captions. Adv. Neural Inf. Process. Syst. 29, 2352–2360 (2016).

34. Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun.
Stat. Theory Methods 3, 1–27 (1974).

35. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J.
Mach. Learning Res. 11, 2837–2854 (2010).

36. Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46, 175–185 (1992).

37. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
38. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297

(1995).
39. Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in python.

Bioinformatics 36, 2272–2274 (2020).
40. Berman, H. M. et al. The protein data bank. Acta Crystallogr. D 58, 899–907

(2002).
41. Stewart-Jones, G. B., McMichael, A. J., Bell, J. I., Stuart, D. I. & Jones, E. Y. A

structural basis for immunodominant human t cell receptor recognition. Nat.
Immunol. 4, 657–663 (2003).

42. Miles, J. J. et al. Genetic and structural basis for selection of a ubiquitous T cell
receptor deployed in Epstein-Barr virus infection. PLoS Pathog. 6, e1001198
(2010).

43. Zhou, Z.-H. A brief introduction to weakly supervised learning. Natl Sci. Rev.
5, 44–53 (2018).

44. Blankson, J. N. et al. Isolation and characterization of replication-competent
human immunodeficiency virus type 1 from a subset of elite suppressors. J.
Virol. 81, 2508–2518 (2007).

45. Bailey, J. R., Williams, T. M., Siliciano, R. F. & Blankson, J. N. Maintenance of
viral suppression in HIV-1-infected HLA-B* 57+ elite suppressors despite
CTL escape mutations. J. Exp. Med. 203, 1357–1369 (2006).

46. Bailey, J. R., Brennan, T. P., O’Connell, K. A., Siliciano, R. F. & Blankson, J. N.
Evidence of CD8+ T-cell-mediated selective pressure on human

immunodeficiency virus type 1 nef in HLA-B* 57+ elite suppressors. J. Virol.
83, 88–97 (2009).

47. O’Connell, K. A. et al. Control of HIV-1 in elite suppressors despite
ongoing replication and evolution in plasma virus. J. Virol. 84, 7018–7028
(2010).

48. Salgado, M. et al. Evolution of the HIV-1 nef gene in HLA-B* 57 positive elite
suppressors. Retrovirology 7, 1–7 (2010).

49. O’Connell, K. A., Hegarty, R. W., Siliciano, R. F. & Blankson, J. N. Viral
suppression of multiple escape mutants by de novo cd8+ t cell responses in a
human immunodeficiency virus-1 infected elite suppressor. Retrovirology 8, 63
(2011).

50. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation
and projection for dimension reduction. Preprint at https://arxiv.org/abs/
1802.03426 (2018).

51. Kuijpers, T. W. et al. Frequencies of circulating cytolytic, CD45ra+ CD27-,
CD8+ T lymphocytes depend on infection with CMV. J. Immunol. 170,
4342–4348 (2003).

52. Senior, A. W. et al. Improved protein structure prediction using potentials
from deep learning. Nature 577, 706–710 (2020).

53. Callaway, E. ‘it will change everything’: Deepmind’s AI makes gigantic leap in
solving protein structures. Nature 588, 203–204 (2020).

54. Sidhom, J.-W. & Baras, A. S. sidhomj/deeptcr. https://doi.org/10.5281/
zenodo.4498967 (2021).

Acknowledgements
The authors thank the MARC/SU2C Foundation for providing financial support for the
work of developing algorithmic pipelines presented in this manuscript. We would like to
thank James R. White for reviewing the DeepTCR codebase.

Author contributions
J.-W.S conceived of the project. J.-W.S. & A.S.B. developed the algorithms. J.-W.S. wrote
the python package. A.S.B. provided the computational resources to develop the algo-
rithms and run the analyses. J.-W.S. & A.S.B. designed the experiments, conducted the
analyses, wrote the manuscript, and created the figures. H.B.L., D.M.P., and A.S.B.
supervised the project, interpreted the results, and provided editorial and conceptual
input into the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21879-w.

Correspondence and requests for materials should be addressed to J.-W.S.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21879-w

12 NATURE COMMUNICATIONS |         (2021) 12:1605 | https://doi.org/10.1038/s41467-021-21879-w |www.nature.com/naturecommunications

https://www.biorxiv.org/content/10.1101/2019.12.18.880146v2.full
https://arxiv.org/abs/2007.13505
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.5281/zenodo.4498967
https://doi.org/10.5281/zenodo.4498967
https://doi.org/10.1038/s41467-021-21879-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
	Outline placeholder
	B1

	Results
	Deep learning approach
	TCR featurization
	A variational autoencoder provides superior antigen-specific clustering
	Supervised approaches improve antigen-specific classification
	Supervised regression allows identification of antigen-specific TCRs in single-cell data
	Perturbation analysis reveals important residues
	TCR repertoire classification identifies TCR signatures of an elite suppressor of HIV

	Discussion
	Methods
	Data curation
	Data transformations
	TCR featurization block
	Training VAE
	Quantifying TCR distance
	Clustering antigen-specific TCR sequences
	Training K-nearest neighbor (KNN) algorithm on TCR sequences
	Training receptor classifier
	Training repertoire classifier
	Motif identification
	Statistical tests and machine learning models

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




